Created
November 5, 2018 15:53
-
-
Save NHDaly/a8fae0d1d65ab1066c585c27e54146fa to your computer and use it in GitHub Desktop.
Benchmark Comparisons of representing numbers as Ints, Floats, and FixedDecimals of various bit sizes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Representation Comparisons | |
# | |
# This benchmark compares the performance of several numeric representations, over various | |
# numeric operations (+,-,*,/,÷...) on large arrays of numbers, in order to guide | |
# decision-making about how to represent fixed-decimal numbers. | |
# | |
# It compares fixed-decimal types against the builtin Int and Float types of various sizes. | |
# The output is written to a .csv file in the same directory as this file. | |
module DecimalBenchmarkComparisons | |
using FixedPointDecimals | |
using Random | |
using BenchmarkTools | |
using DataFrames | |
using CSV | |
# Create the array of data for the benchmark operaitions. | |
# Characteristics of the data: | |
# - Very many entries: N | |
# - Decimal values (with set precision): decimal_precision | |
# - Clustered tightly around 0 (to prevent overflow): -5:2, 2:5 | |
# - None of the values _are_ 0 (to prevent divide by 0) | |
N = 1_000_000 | |
decimal_precision = 2 | |
float_incr = 1/(10^decimal_precision) | |
raw_data = Random.shuffle(vcat(rand.([-5:float_incr:-2, 2:float_incr:5], N)...)) | |
# Express that data through the various types. Round it for integers. | |
fd_FixedPointDecimal_types = [ | |
FixedPointDecimals.FixedDecimal{Int32, decimal_precision}, | |
FixedPointDecimals.FixedDecimal{Int64, decimal_precision}, | |
FixedPointDecimals.FixedDecimal{Int128, decimal_precision}, | |
] | |
inttypes = [Int32,Int64,Int128] | |
floattypes = [Float32,Float64] | |
# Category for the results output CSV | |
category(::Type{<:Integer}) = "Int" | |
category(::Type{<:Union{Float32, Float64}}) = "Float" | |
category(::Type{<:FixedPointDecimals.FixedDecimal}) = "FixedDecimal" | |
# Collect the results | |
results = DataFrame(Operation=Symbol[], Category=String[], Type=DataType[], | |
MinDurationMs=Float64[], Allocations=Int[], MinGcTime=Number[], | |
Value=Number[]) | |
# Run the benchmarks | |
for op in (:identity, :+, :*, :/, :÷) | |
println("$op") | |
for T in (inttypes..., floattypes..., fd_FixedPointDecimal_types...) | |
# Construct the data for the benchmark | |
print("$T ") | |
if T ∈ inttypes | |
data = T.(round.(raw_data)) | |
else | |
data = T.(raw_data) | |
end | |
println("([$(join(data[1:3], ", "))...])") # preview data | |
# Create the function for the benchmark to call | |
f = op == :identity ? eval(op) : @eval (x)->$op($(T(10)),x) | |
# Run the benchmark | |
outs = fill(f(data[1]), length(data)) | |
b = @benchmark for i in $(1:length(data)); $outs[i] = $f($data[i]); end | |
println(b) | |
value = sum(outs) | |
println(value) | |
push!(results, Dict(:Operation=>op, :Category=>category(T), :Type=>T, | |
:MinDurationMs=>b.times[1]/1_000_000, # ns->ms | |
:Allocations=>b.allocs[1], :MinGcTime=>b.gctimes[1], | |
:Value=>value)) | |
end | |
end | |
println(results) | |
CSV.write("$(@__DIR__)/comparisons-benchmark-results.csv", results) | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment