Created
March 24, 2019 14:06
-
-
Save NMZivkovic/05a7350af6087d980bcb883a20a725fc to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
function predict(model, data, testDataSize = 500) { | |
const testData = data.nextDataBatch(testDataSize, true); | |
const testxs = testData.xs.reshape([testDataSize, 28, 28, 1]); | |
const labels = testData.labels.argMax([-1]); | |
const preds = model.predict(testxs).argMax([-1]); | |
testxs.dispose(); | |
return [preds, labels]; | |
} | |
async function displayAccuracyPerClass(model, data) { | |
const [preds, labels] = predict(model, data); | |
const classAccuracy = await tfvis.metrics.perClassAccuracy(labels, preds); | |
const container = {name: 'Accuracy', tab: 'Evaluation'}; | |
tfvis.show.perClassAccuracy(container, classAccuracy, classNames); | |
labels.dispose(); | |
} | |
async function displayConfusionMatrix(model, data) { | |
const [preds, labels] = predict(model, data); | |
const confusionMatrix = await tfvis.metrics.confusionMatrix(labels, preds); | |
const container = {name: 'Confusion Matrix', tab: 'Evaluation'}; | |
tfvis.render.confusionMatrix( | |
container, {values: confusionMatrix}, classNames); | |
labels.dispose(); | |
} | |
async function evaluateModelFunction(model, data) | |
{ | |
await displayAccuracyPerClass(model, data); | |
await displayConfusionMatrix(model, data); | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment