Created
September 5, 2019 08:01
-
-
Save NMZivkovic/2fb0c6ca804b5b6564a5c270386b9820 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import { Component, OnInit, ViewChild, Input, AfterViewInit, ElementRef } from '@angular/core'; | |
import { fromEvent } from 'rxjs'; | |
import { switchMap, takeUntil, pairwise } from 'rxjs/operators'; | |
import * as tf from '@tensorflow/tfjs'; | |
@Component({ | |
selector: 'app-root', | |
templateUrl: './app.component.html', | |
styleUrls: ['./app.component.css'] | |
}) | |
export class AppComponent implements OnInit, AfterViewInit{ | |
@Input() public width = 400; | |
@Input() public height = 400; | |
@ViewChild('canvas', {static: true}) public canvas: ElementRef; | |
private model; | |
private context: CanvasRenderingContext2D; | |
private title = '' | |
private predicted = ''; | |
constructor( | |
) { } | |
/// Loading the model.ng s | |
public async ngOnInit(): Promise<void> { | |
this.title = 'Loading model, please wait...'; | |
this.model = await tf.loadLayersModel('http://localhost:3000/model.json') | |
console.log(this.model.summary()); | |
this.title = 'Model Trained! Write down digits!'; | |
} | |
/// Used to configure canvas properties. | |
public ngAfterViewInit() { | |
const canvasHtmlElement: HTMLCanvasElement = this.canvas.nativeElement; | |
this.context = canvasHtmlElement.getContext('2d'); | |
canvasHtmlElement.width = this.width; | |
canvasHtmlElement.height = this.height; | |
this.context.lineWidth = 11; | |
this.context.lineCap = 'round'; | |
this.context.strokeStyle = '#111111'; | |
this.captureEvents(canvasHtmlElement); | |
} | |
/// Clears the canvas and the information on the screen. | |
public clear(): void { | |
this.context.clearRect(0, 0, this.context.canvas.width, this.context.canvas.height); | |
this.predicted = ''; | |
} | |
/// Captures events from the canvas. | |
/// Based on the type of the event (mousedown, mouseup, etc.) performs certain actions. | |
/// In charge of drawing images on canvas and runing the model predictions once digit is drawn. | |
private captureEvents(canvasHtmlElement: HTMLCanvasElement) { | |
// Draw image. | |
fromEvent(canvasHtmlElement, 'mousedown') | |
.pipe( | |
switchMap((e) => { | |
return fromEvent(canvasHtmlElement, 'mousemove') | |
.pipe( | |
takeUntil(fromEvent(canvasHtmlElement, 'mouseup')), | |
takeUntil(fromEvent(canvasHtmlElement, 'mouseleave')), | |
pairwise() | |
) | |
}) | |
).subscribe((res: [MouseEvent, MouseEvent]) => { | |
const clientRect = canvasHtmlElement.getBoundingClientRect(); | |
const previousPosition = { | |
x: res[0].clientX - clientRect.left, | |
y: res[0].clientY - clientRect.top | |
}; | |
const currentPosition = { | |
x: res[1].clientX - clientRect.left, | |
y: res[1].clientY - clientRect.top | |
}; | |
this.drawOnCanvas(previousPosition, currentPosition); | |
}); | |
// Drawing is finished, run the predictions | |
fromEvent(canvasHtmlElement, 'mouseup') | |
.subscribe( async () => { | |
const pred = await tf.tidy(() => { | |
// Convert the canvas pixels to | |
let image = this.getImage(canvasHtmlElement) | |
// Make and format the predications | |
const output = this.model.predict(image) as any; | |
let predictions = Array.from(output.dataSync()); | |
console.log(predictions); | |
// Write out the prediction. | |
for (let i = 0; i < predictions.length; i++) { | |
if (predictions[i] == "1") { | |
this.predicted = i.toString(); | |
} | |
} | |
if (this.predicted == "") { | |
this.predicted = ":("; | |
} | |
}); | |
}) | |
} | |
/// Handles drawing on the canvas. | |
private drawOnCanvas(previousPosition: { x: number, y: number }, currentPosition: { x: number, y: number }) { | |
if (!this.context) { return; } | |
this.context.beginPath(); | |
if (previousPosition) { | |
this.context.moveTo(previousPosition.x, previousPosition.y); | |
this.context.lineTo(currentPosition.x, currentPosition.y); | |
this.context.stroke(); | |
} | |
} | |
private getImage(canvasHtmlElement) | |
{ | |
this.context.drawImage(canvasHtmlElement, 0, 0, 28, 28); | |
let imageData = this.context.getImageData(0, 0, 28, 28); | |
let img = tf.browser.fromPixels(imageData, 1); | |
let imgtmp = img.reshape([1, 28, 28, 1]); | |
imgtmp = tf.cast(imgtmp, 'float32'); | |
return imgtmp; | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment