Last active
August 16, 2019 13:21
-
-
Save NMZivkovic/496fcc53e453a485fad8aedde6a1a1e2 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class MultiHeadAttentionLayer(Layer): | |
def __init__(self, num_neurons, num_heads): | |
super(MultiHeadAttentionLayer, self).__init__() | |
self.num_heads = num_heads | |
self.num_neurons = num_neurons | |
self.depth = num_neurons // self.num_heads | |
self.attention_layer = ScaledDotProductAttentionLayer() | |
self.q_layer = Dense(num_neurons) | |
self.k_layer = Dense(num_neurons) | |
self.v_layer = Dense(num_neurons) | |
self.linear_layer = Dense(num_neurons) | |
def split(self, x, batch_size): | |
x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth)) | |
return tf.transpose(x, perm=[0, 2, 1, 3]) | |
def call(self, v, k, q, mask): | |
batch_size = tf.shape(q)[0] | |
# Run through linear layers | |
q = self.q_layer(q) | |
k = self.k_layer(k) | |
v = self.v_layer(v) | |
# Split the heads | |
q = self.split(q, batch_size) | |
k = self.split(k, batch_size) | |
v = self.split(v, batch_size) | |
# Run through attention | |
attention_output, weights = self.attention_layer.calculate_output_weights(q, k, v, mask) | |
# Prepare for the rest of processing | |
output = tf.transpose(attention_output, perm=[0, 2, 1, 3]) | |
concat_attention = tf.reshape(output, (batch_size, -1, self.num_neurons)) | |
# Run through final linear layer | |
output = self.linear_layer(concat_attention) | |
return output, weights |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment