Last active
June 15, 2019 20:32
-
-
Save NMZivkovic/6a3998c229dc962d9e0ab29da6d17b5c to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D | |
from tensorflow.keras.models import Model | |
class Autoencoder(object): | |
def __init__(self): | |
# Encoding | |
input_layer = Input(shape=(28, 28, 1)) | |
encoding_conv_layer_1 = Conv2D(16, (3, 3), activation='relu', padding='same')(input_layer) | |
encoding_pooling_layer_1 = MaxPooling2D((2, 2), padding='same')(encoding_conv_layer_1) | |
encoding_conv_layer_2 = Conv2D(8, (3, 3), activation='relu', padding='same')(encoding_pooling_layer_1) | |
encoding_pooling_layer_2 = MaxPooling2D((2, 2), padding='same')(encoding_conv_layer_2) | |
encoding_conv_layer_3 = Conv2D(8, (3, 3), activation='relu', padding='same')(encoding_pooling_layer_2) | |
code_layer = MaxPooling2D((2, 2), padding='same')(encoding_conv_layer_3) | |
# Decoding | |
decodging_conv_layer_1 = Conv2D(8, (3, 3), activation='relu', padding='same')(code_layer) | |
decodging_upsampling_layer_1 = UpSampling2D((2, 2))(decodging_conv_layer_1) | |
decodging_conv_layer_2 = Conv2D(8, (3, 3), activation='relu', padding='same')(decodging_upsampling_layer_1) | |
decodging_upsampling_layer_2 = UpSampling2D((2, 2))(decodging_conv_layer_2) | |
decodging_conv_layer_3 = Conv2D(16, (3, 3), activation='relu')(decodging_upsampling_layer_2) | |
decodging_upsampling_layer_3 = UpSampling2D((2, 2))(decodging_conv_layer_3) | |
output_layer = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(decodging_upsampling_layer_3) | |
self._model = Model(input_layer, output_layer) | |
self._model.compile(optimizer='adadelta', loss='binary_crossentropy') | |
def train(self, input_train, input_test, batch_size, epochs): | |
self._model.fit(input_train, | |
input_train, | |
epochs = epochs, | |
batch_size=batch_size, | |
shuffle=True, | |
validation_data=( | |
input_test, | |
input_test)) | |
def getDecodedImage(self, encoded_imgs): | |
decoded_image = self._model.predict(encoded_imgs) | |
return decoded_image |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment