Created
July 20, 2019 10:09
-
-
Save NMZivkovic/a925be8dbb0c63098d3261514864986e to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class Agent(object): | |
def __init__(self, enviroment, optimizer, image_shape): | |
# Initialize atributes | |
self._action_size = enviroment.action_space.n | |
self._optimizer = optimizer | |
self._image_shape = image_shape | |
self.enviroment = enviroment | |
self.expirience_replay = deque(maxlen=100000) | |
# Initialize discount and exploration rate | |
self.gamma = 0.6 | |
self.epsilon = 0.1 | |
# Build networks | |
self.q_network = self._build_compile_model() | |
self.target_network = self._build_compile_model() | |
self.alighn_target_model() | |
def store(self, state, action, reward, next_state, terminated): | |
self.expirience_replay.append((state, action, reward, next_state, terminated)) | |
def _update_epsilon(self): | |
self.epsilon -= self.epsilon_decay | |
self.epsilon = max(self.epsilon_min, self.epsilon) | |
def _build_compile_model(self): | |
model = Sequential() | |
model.add(Conv2D(32, 8, strides=(4, 4), padding="valid",activation="relu", | |
input_shape = self._image_shape)) | |
model.add(Conv2D(64, 4, strides=(2, 2), padding="valid", activation="relu", | |
input_shape = self._image_shape)) | |
model.add(Conv2D(64, 3, strides=(1, 1), padding="valid",activation="relu", | |
input_shape = self._image_shape)) | |
model.add(Flatten()) | |
model.add(Dense(512, activation="relu")) | |
model.add(Dense(self._action_size)) | |
huber = Huber() | |
model.compile(loss = huber, | |
optimizer=self._optimizer, | |
metrics=["accuracy"]) | |
return model | |
def alighn_target_model(self): | |
self.target_network.set_weights(self.q_network.get_weights()) | |
def act(self, frame): | |
if np.random.rand() <= self.epsilon: | |
return self.enviroment.action_space.sample() | |
frame = np.expand_dims(np.asarray(frame).astype(np.float64), axis=0) | |
q_values = self.q_network.predict(frame) | |
return np.argmax(q_values[0]) | |
def retrain(self, batch_size): | |
minibatch = random.sample(self.expirience_replay, batch_size) | |
for state, action, reward, next_state, terminated in minibatch: | |
state = np.expand_dims(np.asarray(state).astype(np.float64), axis=0) | |
next_state = np.expand_dims(np.asarray(next_state).astype(np.float64), axis=0) | |
target = self.q_network.predict(state) | |
if terminated: | |
target[0][action] = reward | |
else: | |
t = self.target_network.predict(next_state) | |
target[0][action] = reward + self.gamma * np.amax(t) | |
self.q_network.fit(state, target, epochs=1, verbose=0) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment