Created
August 30, 2019 17:26
-
-
Save NMZivkovic/c1502211ae5f9ff083245ccfc31a148a to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
train_step_signature = [ | |
tf.TensorSpec(shape=(None, None), dtype=tf.int64), | |
tf.TensorSpec(shape=(None, None), dtype=tf.int64), | |
] | |
@tf.function(input_signature=train_step_signature) | |
def train_step(input_language, target_language): | |
target_input = target_language[:, :-1] | |
tartet_output = target_language[:, 1:] | |
# Create masks | |
encoder_padding_mask = maskHandler.padding_mask(input_language) | |
decoder_padding_mask = maskHandler.padding_mask(input_language) | |
look_ahead_mask = maskHandler.look_ahead_mask(tf.shape(target_language)[1]) | |
decoder_target_padding_mask = maskHandler.padding_mask(target_language) | |
combined_mask = tf.maximum(decoder_target_padding_mask, look_ahead_mask) | |
# Run training step | |
with tf.GradientTape() as tape: | |
predictions, _ = transformer(input_language, target_input, True, encoder_padding_mask, combined_mask, decoder_padding_mask) | |
total_loss = padded_loss_function(tartet_output, predictions) | |
gradients = tape.gradient(total_loss, transformer.trainable_variables) | |
optimizer.apply_gradients(zip(gradients, transformer.trainable_variables)) | |
training_loss(total_loss) | |
training_accuracy(tartet_output, predictions) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment