Created
July 12, 2019 14:01
-
-
Save NMZivkovic/dfca17cb243ce09aca084f3a54e99eba to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
using BikeSharingDemand.Helpers; | |
using BikeSharingDemand.ModelNamespace; | |
using Microsoft.ML; | |
using System; | |
using System.Collections.Generic; | |
using System.Linq; | |
namespace BikeSharingDemand | |
{ | |
class Program | |
{ | |
private static MLContext _mlContext = new MLContext(); | |
private static Dictionary<Model, double> _stats = new Dictionary<Model, double>(); | |
private static string _trainingDataLocation = @"Data/hour_train.csv"; | |
private static string _testDataLocation = @"Data/hour_test.csv"; | |
static void Main(string[] args) | |
{ | |
var regressors = new List<IEstimator<ITransformer>>() | |
{ | |
_mlContext.Regression.Trainers.Sdca(labelColumnName: "Count", featureColumnName: "Features"), | |
_mlContext.Regression.Trainers.LbfgsPoissonRegression(labelColumnName: "Count", featureColumnName: "Features"), | |
_mlContext.Regression.Trainers.FastForest(labelColumnName: "Count", featureColumnName: "Features"), | |
_mlContext.Regression.Trainers.FastTree(labelColumnName: "Count", featureColumnName: "Features"), | |
_mlContext.Regression.Trainers.FastTreeTweedie(labelColumnName: "Count", featureColumnName: "Features"), | |
_mlContext.Regression.Trainers.Gam(labelColumnName: "Count", featureColumnName: "Features") | |
}; | |
regressors.ForEach(RunAlgorythm); | |
var bestModel = _stats.Where(x => x.Value == _stats.Max(y => y.Value)).Single().Key; | |
VisualizeTenPredictionsForTheModel(bestModel); | |
bestModel.SaveModel(); | |
Console.ReadLine(); | |
} | |
private static void RunAlgorythm(IEstimator<ITransformer> algorythm) | |
{ | |
var model = new Model(_mlContext, algorythm, _trainingDataLocation); | |
model.BuildAndFit(); | |
PrintAndStoreMetrics(model); | |
} | |
private static void PrintAndStoreMetrics(Model model) | |
{ | |
var metrics = model.Evaluate(_testDataLocation); | |
Console.WriteLine($"*************************************************"); | |
Console.WriteLine($"* Metrics for {model.Name} "); | |
Console.WriteLine($"*------------------------------------------------"); | |
Console.WriteLine($"* R2 Score: {metrics.RSquared:#.##}"); | |
Console.WriteLine($"* Mean Absolute Error: {metrics.MeanAbsoluteError:#.##}"); | |
Console.WriteLine($"* Mean Squared Error: {metrics.MeanSquaredError:#.##}"); | |
Console.WriteLine($"* RMS Error: {metrics.RootMeanSquaredError:#.##}"); | |
Console.WriteLine($"*************************************************"); | |
_stats.Add(model, metrics.RSquared); | |
} | |
private static void VisualizeTenPredictionsForTheModel(Model model) | |
{ | |
Console.WriteLine($"*************************************************"); | |
Console.WriteLine($"* BEST MODEL IS: {model.Name}!"); | |
Console.WriteLine($"* Here are its predictions: "); | |
var testData = new BikeSharingDemandsCsvReader().GetDataFromCsv(_testDataLocation).ToList(); | |
for (int i = 0; i < 10; i++) | |
{ | |
var prediction = model.Predict(testData[i]); | |
Console.WriteLine($"*------------------------------------------------"); | |
Console.WriteLine($"* Predicted : {prediction.Score}"); | |
Console.WriteLine($"* Actual: {testData[i].Count}"); | |
Console.WriteLine($"*------------------------------------------------"); | |
} | |
Console.WriteLine($"*************************************************"); | |
} | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment