Created
July 10, 2020 16:30
-
-
Save Namburger/39c8da325c154ab126a44ef5e203efb3 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import sys | |
from tflite_runtime.interpreter import Interpreter | |
from tflite_runtime.interpreter import load_delegate | |
import time | |
if len(sys.argv) < 2: | |
print('Usage:', sys.argv[0], 'model_path') | |
exit() | |
def main(): | |
"""Runs inference with an input tflite model.""" | |
model_path = str(sys.argv[1]) | |
if model_path.endswith('edgetpu.tflite'): | |
print('initialized for edgetpu') | |
delegates = [load_delegate('libedgetpu.so.1.0')] | |
interpreter = Interpreter(model_path, experimental_delegates=delegates) | |
else: | |
print('initialized for cpu') | |
interpreter = Interpreter(model_path) | |
interpreter.allocate_tensors() | |
input_details = interpreter.get_input_details() | |
images = np.zeros(input_details[0]['shape'], input_details[0]['dtype']) | |
#print(images) | |
interpreter.set_tensor(input_details[0]['index'], images) | |
t0 = time.perf_counter() | |
for i in range(1000): | |
interpreter.invoke() | |
print('time took for 1000 invokes:', time.perf_counter() - t0) | |
output_details = interpreter.get_output_details() | |
outputs = interpreter.get_tensor(output_details[0]['index']) | |
print(outputs) | |
print('Success.') | |
if __name__== '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment