Last active
December 22, 2017 09:43
-
-
Save NanXiao/94a16cc74c29762484c7373ac3cc47f8 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* compile: | |
* /opt/cuda/bin/nvcc -ccbin g++ -gencode=arch=compute_60,code=sm_60 -std=c++11 -O3 -I/usr/local/nccl/include/ -L/opt/cuda/lib64 -lcudart -lrt -L/usr/local/nccl/lib -lcurand -lnccl -lnvToolsExt -o nccl_ex nccl_ex.cu | |
*/ | |
#include "nccl.h" | |
#include <stdio.h> | |
#define GPU_COUNT (4) | |
#define CUDACHECK(cmd) do { \ | |
cudaError_t e = cmd; \ | |
if( e != cudaSuccess ) { \ | |
printf("Cuda failure %s:%d '%s'\n", \ | |
__FILE__,__LINE__,cudaGetErrorString(e)); \ | |
exit(EXIT_FAILURE); \ | |
} \ | |
} while(0) | |
#define NCCLCHECK(cmd) do { \ | |
ncclResult_t r = cmd; \ | |
if (r!= ncclSuccess) { \ | |
printf("NCCL failure %s:%d '%s'\n", \ | |
__FILE__,__LINE__,ncclGetErrorString(r)); \ | |
exit(EXIT_FAILURE); \ | |
} \ | |
} while(0) | |
int main(void) | |
{ | |
ncclComm_t* comms = (ncclComm_t*)malloc(sizeof(ncclComm_t) * GPU_COUNT); | |
int gpuArray[GPU_COUNT]; | |
for (int i = 0; i < GPU_COUNT; i++) | |
{ | |
gpuArray[i] = i; | |
} | |
NCCLCHECK(ncclCommInitAll(comms, GPU_COUNT, gpuArray)); | |
void* sendbuffs[GPU_COUNT]; | |
void* recvbuffs[GPU_COUNT]; | |
cudaStream_t streams[GPU_COUNT]; | |
for (int i = 0; i < GPU_COUNT; i++) | |
{ | |
int count = 0, device = 0, rank = 0; | |
NCCLCHECK(ncclCommCount(comms[i], &count)); | |
NCCLCHECK(ncclCommCuDevice(comms[i], &device)); | |
NCCLCHECK(ncclCommUserRank(comms[i], &rank)); | |
printf("count is %d, device is %d, rank is %d\n", count, device, rank); | |
CUDACHECK(cudaSetDevice(i)); | |
CUDACHECK(cudaMalloc(sendbuffs + i, sizeof(ncclInt))); | |
CUDACHECK(cudaMemcpy(sendbuffs[i], &i, sizeof(i), cudaMemcpyHostToDevice)); | |
CUDACHECK(cudaMalloc(recvbuffs + i, sizeof(ncclInt))); | |
CUDACHECK(cudaStreamCreate(streams + i)); | |
} | |
NCCLCHECK(ncclGroupStart()); | |
//NCCLCHECK(ncclReduce(sendbuffs[0], NULL, 1, ncclInt, ncclSum, 0, comms[0], streams[0])); | |
for (int i = 0; i < GPU_COUNT; i++) | |
{ | |
//NCCLCHECK(ncclReduce(sendbuffs[i], recvbuffs[i], 1, ncclInt, ncclSum, 0, comms[i], streams[i])); | |
NCCLCHECK(ncclAllReduce(sendbuffs[i], recvbuffs[i], 1, ncclInt, ncclSum, comms[i], streams[i])); | |
} | |
NCCLCHECK(ncclGroupEnd()); | |
for (int i = 0; i < GPU_COUNT; i++) { | |
cudaError_t err = cudaErrorNotReady; | |
while (err == cudaErrorNotReady) { | |
err = cudaStreamQuery(streams[i]); | |
} | |
CUDACHECK(err); | |
} | |
for (int i = 0; i < GPU_COUNT; i++) | |
{ | |
int res = 0; | |
cudaMemcpy(&res, recvbuffs[i], sizeof(int), cudaMemcpyDeviceToHost); | |
printf("res is %d\n", res); | |
} | |
return 0; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment