Last active
May 31, 2021 18:27
-
-
Save Nannigalaxy/22925a60a22fcf78562f7aca09ffa4ba to your computer and use it in GitHub Desktop.
Auto annotation for plain background images.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import cv2 | |
import numpy as np | |
from matplotlib import pyplot as plt | |
def get_bbox(path, plot=False): | |
img = cv2.imread(path) | |
orig = img.copy() | |
################ | |
# denoise | |
############### | |
dn = cv2.fastNlMeansDenoisingColored(img,None,30,7,21) | |
############ | |
# mask | |
############ | |
hsv = cv2.cvtColor(dn, cv2.COLOR_BGR2HSV) | |
# green color mask | |
mask = cv2.inRange(hsv, (26, 25, 25), (70, 255,255)) | |
## slice the green | |
imask = mask>0 | |
mask = np.zeros_like(img, np.uint8) | |
mask.fill(255) | |
mask[imask] = img[imask] | |
########### | |
# K means | |
########### | |
Z = mask.reshape((-1,3)) | |
Z = np.float32(Z) | |
# define criteria, number of clusters(K) and apply kmeans() | |
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0) | |
K = 2 | |
ret,label,center=cv2.kmeans(Z,K,None,criteria,10,cv2.KMEANS_RANDOM_CENTERS) | |
center = np.uint8(center) | |
res = center[label.flatten()] | |
km = res.reshape((img.shape)) | |
################ | |
# bw from km | |
################ | |
gray = cv2.cvtColor(km,cv2.COLOR_BGR2GRAY) | |
thresh = 127 | |
bw = cv2.threshold(gray, thresh, 255, cv2.THRESH_BINARY)[1] | |
######################## | |
# bounding box from bw | |
######################## | |
ret,thresh = cv2.threshold(bw,50,255,1) | |
# Remove some small noise if any. | |
dilate = cv2.dilate(thresh,None) | |
erode = cv2.erode(dilate,None) | |
cv2.imshow('gray',erode) | |
# Find contours with cv2.RETR_CCOMP | |
contours,hierarchy = cv2.findContours(erode,cv2.RETR_CCOMP,cv2.CHAIN_APPROX_SIMPLE) | |
loc = [] | |
for i,cnt in enumerate(contours): | |
# Check if it is an external contour and its area is more than 100 | |
if hierarchy[0,i,3] == -1 and cv2.contourArea(cnt)>5000: | |
x,y,w,h = cv2.boundingRect(cnt) | |
loc.extend(cv2.boundingRect(cnt)) | |
cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2) | |
if plot: | |
plt.subplot(231),plt.imshow(orig,cmap = 'gray') | |
plt.title('Original Image'), plt.xticks([]), plt.yticks([]) | |
plt.subplot(232),plt.imshow(dn,cmap = 'gray') | |
plt.title('Highly Denoised Image'), plt.xticks([]), plt.yticks([]) | |
plt.subplot(233),plt.imshow(green,cmap = 'gray') | |
plt.title('Mask Image'), plt.xticks([]), plt.yticks([]) | |
plt.subplot(234),plt.imshow(km,cmap = 'gray') | |
plt.title('KM Image'), plt.xticks([]), plt.yticks([]) | |
plt.subplot(235),plt.imshow(bw,cmap = 'gray') | |
plt.title('BW Image'), plt.xticks([]), plt.yticks([]) | |
plt.subplot(236),plt.imshow(img,cmap = 'gray') | |
plt.title('Bounding Box'), plt.xticks([]), plt.yticks([]) | |
# plt.savefig('results/result_'+str(img_path.split('/')[1].split('.')[0])+'.png') | |
plt.show() | |
return loc | |
if __name__ == '__main__': | |
import time | |
img_path = 'imgs/1.JPG' | |
st = time.time() | |
print(get_bbox(img_path)) | |
print('time:',time.time()-st) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
I have hardcoded for green leaves. Modify to your need and experiment.