-
-
Save NduatiK/7c5e24d915686f4dffc40e0579011f99 to your computer and use it in GitHub Desktop.
Elixir ZA: Boost your data team's productivity with Explorer
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Elixir ZA: Boost your data team's productivity with Explorer | |
```elixir | |
Mix.install( | |
[ | |
{:explorer, "~> 0.8.3"}, | |
{:kino, "~> 0.13.2"}, | |
{:kino_vega_lite, "~> 0.1.13"}, | |
{:kino_explorer, "~> 0.1.20"}, | |
{:adbc, "~> 0.6.0"}, | |
{:nx, "~> 0.7.3"}, | |
{:exla, "~> 0.7.3"}, | |
{:tucan, "~> 0.3.1"}, | |
{:recase, "~> 0.8.1"} | |
], | |
config: [ | |
adbc: [drivers: [:sqlite]], | |
nx: [ | |
default_backend: EXLA.Backend, | |
default_defn_options: [compiler: EXLA, client: :host] | |
] | |
] | |
) | |
``` | |
## ADBC and San Francisco Restaurants | |
```elixir | |
require Explorer.DataFrame, as: DataFrame | |
require Explorer.Series, as: Series | |
``` | |
```elixir | |
{:ok, db} = Kino.start_child({Adbc.Database, driver: :sqlite, uri: "file:/Users/chris/Downloads/sfscores.sqlite"}) | |
{:ok, conn} = Kino.start_child({Adbc.Connection, database: db}) | |
``` | |
```elixir | |
tables = DataFrame.from_query!(conn, "SELECT name FROM sqlite_master WHERE type='table';", []) | |
``` | |
```elixir | |
dataframes = | |
for table_name <- Series.to_list(tables[:name]), into: %{} do | |
{table_name, | |
conn | |
|> DataFrame.from_query!("select * from #{table_name}", []) | |
|> DataFrame.rename_with(&Recase.to_snake/1) | |
} | |
end | |
``` | |
```elixir | |
businesses = dataframes["businesses"] | |
``` | |
```elixir | |
owners = | |
businesses | |
|> DataFrame.select(&String.starts_with?(&1, "owner_")) | |
|> DataFrame.distinct() | |
|> DataFrame.rename_with(fn | |
"owner_name" = name -> name | |
"owner_" <> name -> name | |
end) | |
``` | |
```elixir | |
business_owners = DataFrame.select(businesses, ["business_id", "owner_name"]) | |
``` | |
```elixir | |
largest_owners = | |
business_owners | |
|> DataFrame.group_by("owner_name") | |
|> DataFrame.summarise(business_count: Series.size(business_id)) | |
|> DataFrame.sort_by(desc: business_count) | |
``` | |
```elixir | |
businesses = DataFrame.select(businesses, &(not String.starts_with?(&1, "owner_"))) | |
``` | |
```elixir | |
inspections = dataframes["inspections"] | |
``` | |
```elixir | |
violations = dataframes["violations"] | |
``` | |
```elixir | |
inspections = | |
DataFrame.mutate(inspections, | |
business_id: cast(business_id, :integer), | |
date: date |> strptime("%Y%m%d") |> cast(:date), | |
type: cast(type, :category) | |
) | |
``` | |
```elixir | |
violations = | |
DataFrame.mutate(violations, | |
business_id: cast(business_id, :integer), | |
date: date |> strptime("%Y%m%d") |> cast(:date), | |
risk_category: cast(risk_category, :category), | |
violation_type_id: cast(violation_type_id, :category) | |
) | |
``` | |
```elixir | |
Series.distinct(violations[:risk_category]) | |
``` | |
```elixir | |
count_by_risk_category = | |
violations | |
|> DataFrame.group_by([:business_id, :risk_category]) | |
|> DataFrame.summarise(count: Series.size(business_id)) | |
``` | |
```elixir | |
Tucan.bar(count_by_risk_category, "risk_category", "count", width: 400, height: 200) | |
``` | |
```elixir | |
weighted_scores = | |
count_by_risk_category | |
|> DataFrame.mutate( | |
weighted_score: | |
cond do | |
risk_category == "High Risk" -> count * 3 | |
risk_category == "Moderate Risk" -> count * 2 | |
risk_category == "Low Risk" -> count * 1 | |
end | |
) | |
|> DataFrame.group_by(:business_id) | |
|> DataFrame.summarise(weighted_score: sum(weighted_score), total_violations: sum(count)) | |
``` | |
```elixir | |
weighted_scores | |
|> DataFrame.join(businesses) | |
|> DataFrame.join(business_owners, how: :left) | |
|> DataFrame.join(largest_owners, how: :left) | |
|> DataFrame.sort_by(desc: weighted_score) | |
|> Tucan.bubble("weighted_score", "total_violations", "business_count", width: 600, height: 500, tooltip: :data) | |
``` | |
```elixir | |
x = Series.to_tensor(weighted_scores[:total_violations]) | |
y = Series.to_tensor(weighted_scores[:weighted_score]) | |
``` | |
```elixir | |
defmodule Correlation do | |
import Nx.Defn | |
defn pearson(x, y) do | |
mean_x = Nx.mean(x) | |
mean_y = Nx.mean(y) | |
diff_x = x - mean_x | |
diff_y = y - mean_y | |
numerator = Nx.sum(diff_x * diff_y) | |
denominator = Nx.sqrt(Nx.sum(diff_x * diff_x) * Nx.sum(diff_y * diff_y)) | |
numerator / denominator | |
end | |
end | |
``` | |
```elixir | |
Correlation.pearson(weighted_scores[:total_violations], weighted_scores[:weighted_score]) | |
``` |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment