Last active
January 13, 2022 11:39
-
-
Save NegatioN/ae44f7004d81c39ecdf567728ba8b6ab to your computer and use it in GitHub Desktop.
MVP Inconsistent output shape
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
''' | |
#Conda environment file (env.yml). Install with `conda env create -f env.yml` | |
channels: | |
- nvidia | |
- rapidsai | |
- anaconda | |
- conda-forge | |
dependencies: | |
- python=3.8 | |
- pip | |
- nomkl | |
- pylint | |
- pandas==1.2.* | |
- pillow==8.2.0 | |
- python-confluent-kafka==1.6.* | |
- ipykernel==6.2.* | |
- psutil==5.8.* | |
- google-cloud-sdk==342.0.* | |
- tqdm==4.61.* | |
- prometheus_client==0.10.* | |
- fire==0.3.* | |
- pyspark==3.1.2 | |
- cudf==21.08.03 | |
- nvtabular==0.8.0 | |
- cudatoolkit==11.0.* | |
- pip: | |
- crcmod==1.7 | |
- joblib==0.11 | |
- annoy==1.16.3 | |
- records==0.5.3 | |
- psycopg2-binary==2.8.6 | |
- pynvml | |
- fastcore | |
- transformers4rec==0.1.4 | |
- https://download.pytorch.org/whl/cu113/torch-1.10.0%2Bcu113-cp38-cp38-linux_x86_64.whl | |
- torchmetrics | |
name: transformers4rec | |
''' | |
''' | |
./schema/mvp_schema.pbtxt | |
feature { | |
name: "item_id-list_seq" | |
type: INT | |
value_count { | |
min: 2 | |
max: 20 | |
} | |
int_domain { | |
name: "item_id/list" | |
min: 0 | |
max: 161452 | |
is_categorical: true | |
} | |
annotation { | |
tag: "categorical" | |
tag: "list" | |
tag: "item_id" | |
tag: "item" | |
} | |
} | |
''' | |
from merlin_standard_lib import Schema | |
from transformers4rec import torch as tr | |
import torch | |
SESSIONS_MAX_LENGTH = 20 | |
schema = Schema().from_proto_text('./schema/mvp_schema.pbtxt').select_by_name(['item_id-list_seq']) | |
d_model = 320 | |
input_module = tr.TabularSequenceFeatures.from_schema( | |
schema, | |
max_sequence_length=SESSIONS_MAX_LENGTH, | |
aggregation="concat", | |
d_output=d_model, | |
masking="mlm", | |
) | |
prediction_task = tr.NextItemPredictionTask(hf_format=True, weight_tying=True) | |
model_config = tr.XLNetConfig.build(d_model=d_model, n_head=8, n_layer=2, total_seq_length=SESSIONS_MAX_LENGTH) | |
model = model_config.to_torch_model(input_module, prediction_task) | |
items = torch.as_tensor([5, 7, 8]).unsqueeze(0) | |
item_tensor = {'item_id-list_seq': items} | |
for x in range(10): | |
ans = model(item_tensor) | |
print(ans['labels'].size()) | |
''' | |
torch.Size([1]) | |
torch.Size([1]) | |
torch.Size([1]) | |
torch.Size([1]) | |
torch.Size([2]) | |
torch.Size([2]) | |
torch.Size([1]) | |
torch.Size([1]) | |
torch.Size([1]) | |
torch.Size([2]) | |
''' |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment