Last active
April 16, 2020 09:51
-
-
Save NegatioN/d46f17caa47535fa4940c727d1fd537d to your computer and use it in GitHub Desktop.
Pytorch N-hot encode function
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def n_hot(y, num_classes, scatter_dim): | |
# we assume the masking-value is always -1 | |
# add extra class and shift y's | |
nc = num_classes+1 | |
y+= 1 | |
y_tensor = y.view(*y.size()[:scatter_dim], -1) | |
zeros = torch.zeros(*y.size()[:scatter_dim], nc, dtype=y.dtype, device=y.device) | |
res = zeros.scatter(scatter_dim, y_tensor, 1) | |
return res.index_select(scatter_dim, torch.arange(1, nc).long()) | |
n_hot(inp, 10, 0) | |
t = torch.as_tensor([[1, 3], [2, 4]]) | |
inp = [torch.as_tensor(x) for x in [[3, 7, 9], [3], [9, 1, 4]]] | |
inp = torch.nn.utils.rnn.pad_sequence(inp, batch_first=True, padding_value=-1) | |
n_hot(t, num_classes=10, scatter_dim=1) | |
n_hot(inp, num_classes=10, scatter_dim=1) | |
#Output | |
''' | |
tensor([[0, 1, 0, 1, 0, 0, 0, 0, 0, 0], | |
[0, 0, 1, 0, 1, 0, 0, 0, 0, 0]]) | |
tensor([[0, 0, 0, 1, 0, 0, 0, 1, 0, 1], | |
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0], | |
[0, 1, 0, 0, 1, 0, 0, 0, 0, 1]]) | |
''' |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment