-
-
Save NeutralKaon/e91c925731551f637d92d29bc24a2e92 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#Helper function to plot a simple linear regression line over a facet_wrap grid with ggplot2 | |
stat_smooth_func <- function(mapping = NULL, data = NULL, | |
geom = "smooth", position = "identity", | |
..., | |
method = "auto", | |
formula = y ~ x, | |
se = TRUE, | |
n = 80, | |
span = 0.75, | |
fullrange = FALSE, | |
level = 0.95, | |
method.args = list(), | |
na.rm = FALSE, | |
show.legend = NA, | |
inherit.aes = TRUE, | |
xpos = NULL, | |
ypos = NULL) { | |
layer( | |
data = data, | |
mapping = mapping, | |
stat = StatSmoothFunc, | |
geom = geom, | |
position = position, | |
show.legend = show.legend, | |
inherit.aes = inherit.aes, | |
params = list( | |
method = method, | |
formula = formula, | |
se = se, | |
n = n, | |
fullrange = fullrange, | |
level = level, | |
na.rm = na.rm, | |
method.args = method.args, | |
span = span, | |
xpos = xpos, | |
ypos = ypos, | |
... | |
) | |
) | |
} | |
StatSmoothFunc <- ggproto("StatSmooth", Stat, | |
setup_params = function(data, params) { | |
# Figure out what type of smoothing to do: loess for small datasets, | |
# gam with a cubic regression basis for large data | |
# This is based on the size of the _largest_ group. | |
if (identical(params$method, "auto")) { | |
max_group <- max(table(data$group)) | |
if (max_group < 1000) { | |
params$method <- "loess" | |
} else { | |
params$method <- "gam" | |
params$formula <- y ~ s(x, bs = "cs") | |
} | |
} | |
if (identical(params$method, "gam")) { | |
params$method <- mgcv::gam | |
} | |
params | |
}, | |
compute_group = function(data, scales, method = "auto", formula = y~x, | |
se = TRUE, n = 80, span = 0.75, fullrange = FALSE, | |
xseq = NULL, level = 0.95, method.args = list(), | |
na.rm = FALSE, xpos=NULL, ypos=NULL) { | |
if (length(unique(data$x)) < 2) { | |
# Not enough data to perform fit | |
return(data.frame()) | |
} | |
if (is.null(data$weight)) data$weight <- 1 | |
if (is.null(xseq)) { | |
if (is.integer(data$x)) { | |
if (fullrange) { | |
xseq <- scales$x$dimension() | |
} else { | |
xseq <- sort(unique(data$x)) | |
} | |
} else { | |
if (fullrange) { | |
range <- scales$x$dimension() | |
} else { | |
range <- range(data$x, na.rm = TRUE) | |
} | |
xseq <- seq(range[1], range[2], length.out = n) | |
} | |
} | |
# Special case span because it's the most commonly used model argument | |
if (identical(method, "loess")) { | |
method.args$span <- span | |
} | |
if (is.character(method)) method <- match.fun(method) | |
base.args <- list(quote(formula), data = quote(data), weights = quote(weight)) | |
model <- do.call(method, c(base.args, method.args)) | |
m = model | |
eq <- substitute(italic(y) == a + b %.% italic(x)*","~~italic(r)^2~"="~r2, | |
list(a = format(coef(m)[[1]], digits = 1), | |
b = format(coef(m)[[2]], digits = 2), | |
r2 = format(summary(m)$r.squared, digits = 2))) | |
func_string = as.character(as.expression(eq)) | |
if(is.null(xpos)) xpos = min(data$x)*0.9 | |
if(is.null(ypos)) ypos = max(data$y)*0.9 | |
data.frame(x=xpos, y=ypos, label=func_string) | |
}, | |
required_aes = c("x", "y") | |
) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment