Created
July 24, 2022 16:01
-
-
Save Neutrollized/eacbd94101d6dcb2ab33ce910d089ccb to your computer and use it in GitHub Desktop.
Medium: Installing TensorFlow on Apple M1 Pro using pyenv
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #! /usr/bin/env python3 | |
| import tensorflow as tf | |
| import tensorflow_datasets as tfds | |
| (ds_train, ds_test), ds_info = tfds.load( | |
| 'mnist', | |
| split=['train', 'test'], | |
| shuffle_files=True, | |
| as_supervised=True, | |
| with_info=True, | |
| ) | |
| def normalize_img(image, label): | |
| """Normalizes images: `uint8` -> `float32`.""" | |
| return tf.cast(image, tf.float32) / 255., label | |
| batch_size = 128 | |
| ds_train = ds_train.map( | |
| normalize_img, num_parallel_calls=tf.data.experimental.AUTOTUNE) | |
| ds_train = ds_train.cache() | |
| ds_train = ds_train.shuffle(ds_info.splits['train'].num_examples) | |
| ds_train = ds_train.batch(batch_size) | |
| ds_train = ds_train.prefetch(tf.data.experimental.AUTOTUNE) | |
| ds_test = ds_test.map( | |
| normalize_img, num_parallel_calls=tf.data.experimental.AUTOTUNE) | |
| ds_test = ds_test.batch(batch_size) | |
| ds_test = ds_test.cache() | |
| ds_test = ds_test.prefetch(tf.data.experimental.AUTOTUNE) | |
| model = tf.keras.models.Sequential([ | |
| tf.keras.layers.Conv2D(32, kernel_size=(3, 3), | |
| activation='relu'), | |
| tf.keras.layers.Conv2D(64, kernel_size=(3, 3), | |
| activation='relu'), | |
| tf.keras.layers.MaxPooling2D(pool_size=(2, 2)), | |
| # tf.keras.layers.Dropout(0.25), | |
| tf.keras.layers.Flatten(), | |
| tf.keras.layers.Dense(128, activation='relu'), | |
| # tf.keras.layers.Dropout(0.5), | |
| tf.keras.layers.Dense(10, activation='softmax') | |
| ]) | |
| model.compile( | |
| loss='sparse_categorical_crossentropy', | |
| optimizer=tf.keras.optimizers.Adam(0.001), | |
| metrics=['accuracy'], | |
| ) | |
| model.fit( | |
| ds_train, | |
| epochs=12, | |
| validation_data=ds_test, | |
| ) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment