Created
May 2, 2011 21:50
-
-
Save NicolasT/952451 to your computer and use it in GitHub Desktop.
Coq definitions and proofs of several functors
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Require Import Coq.Program.Basics. | |
Open Local Scope program_scope. | |
Definition id (A: Type) (e: A): A := e. | |
Module Type FUNCTOR. | |
Set Implicit Arguments. | |
Parameter F: forall (A: Type), Type. | |
Parameter fmap: forall (A B: Type), (A -> B) -> F A -> F B. | |
Axiom associativity: forall (A B C: Type) (f: A -> B) (g: B -> C) (e: F A), | |
fmap (g ∘ f) e = fmap g (fmap f e). | |
Axiom identity: forall (A: Type) (e: F A), | |
fmap (id A) e = e. | |
End FUNCTOR. | |
Inductive Identity (A: Type): Type := | |
| Id: A -> Identity A. | |
Module IdentityFunctor <: FUNCTOR. | |
Set Implicit Arguments. | |
Definition F := Identity. | |
Definition fmap (A B: Type) (f: A -> B) (e: F A): F B := | |
match e with | |
| Id a => Id B (f a) | |
end. | |
Lemma associativity: forall (A B C: Type) (f: A -> B) (g: B -> C) (e: F A), | |
fmap (fun x: A => g (f x)) e = fmap g (fmap f e). | |
Proof. | |
intros. | |
induction e. | |
simpl. | |
reflexivity. | |
Qed. | |
Lemma identity: forall (A: Type) (e: F A), | |
fmap (id A) e = e. | |
Proof. | |
intros. | |
induction e. | |
simpl. | |
reflexivity. | |
Qed. | |
End IdentityFunctor. | |
Inductive Maybe (A: Type): Type := | |
| Nothing: Maybe A | |
| Just: A -> Maybe A. | |
Module MaybeFunctor <: FUNCTOR. | |
Set Implicit Arguments. | |
Definition F := Maybe. | |
Definition fmap (A B: Type) (f: A -> B) (e: F A): F B := | |
match e with | |
| Nothing => Nothing B | |
| Just a => Just B (f a) | |
end. | |
Lemma associativity: forall (A B C: Type) (f: A -> B) (g: B -> C) (e: F A), | |
fmap (g ∘ f) e = fmap g (fmap f e). | |
Proof. | |
intros. | |
induction e. | |
simpl. | |
reflexivity. | |
simpl. | |
reflexivity. | |
Qed. | |
Lemma identity: forall (A: Type) (e: F A), | |
fmap (id A) e = e. | |
Proof. | |
intros. | |
induction e. | |
simpl. | |
reflexivity. | |
simpl. | |
reflexivity. | |
Qed. | |
End MaybeFunctor. | |
Inductive List (A: Type): Type := | |
| Nil: List A | |
| Cons: A -> List A -> List A. | |
Module ListFunctor <: FUNCTOR. | |
Set Implicit Arguments. | |
Definition F := List. | |
Fixpoint fmap (A B: Type) (f: A -> B) (e: F A) {struct e}: F B := | |
match e with | |
| Nil => Nil B | |
| Cons a b => Cons B (f a) (fmap f b) | |
end. | |
Lemma associativity: forall (A B C: Type) (f: A -> B) (g: B -> C) (e: F A), | |
fmap (g ∘ f) e = fmap g (fmap f e). | |
Proof. | |
intros. | |
induction e. | |
simpl. | |
reflexivity. | |
simpl. | |
rewrite IHe. | |
reflexivity. | |
Qed. | |
Lemma identity : forall (A : Type) (e: F A), | |
fmap (id A) e = e. | |
Proof. | |
intros. | |
induction e. | |
simpl. | |
reflexivity. | |
simpl. | |
rewrite IHe. | |
reflexivity. | |
Qed. | |
End ListFunctor. | |
Recursive Extraction IdentityFunctor MaybeFunctor ListFunctor. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment