Created
December 22, 2011 17:55
-
-
Save NightlordTW/1511193 to your computer and use it in GitHub Desktop.
Constrained Logistic Regression
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
################################################################################ | |
# Calculates the maximum likelihood estimates of a logistic regression model | |
# Slopes are constrained to non-negative values | |
# | |
# fmla : model formula | |
# x : a [n x p] dataframe with the data. Factors should be coded accordingly | |
# | |
# OUTPUT | |
# beta : the estimated regression coefficients | |
# vcov : the variane-covariance matrix | |
# ll : -2ln L (deviance) | |
# | |
################################################################################ | |
# Author : Thomas Debray | |
# Version : 22 dec 2011 | |
################################################################################ | |
mle.logreg.constrained = function(fmla, data) | |
{ | |
# Define the negative log likelihood function | |
logl <- function(theta,x,y){ | |
y <- y | |
x <- as.matrix(x) | |
beta <- theta[1:ncol(x)] | |
# Use the log-likelihood of the Bernouilli distribution, where p is | |
# defined as the logistic transformation of a linear combination | |
# of predictors, according to logit(p)=(x%*%beta) | |
loglik <- sum(-y*log(1 + exp(-(x%*%beta))) - (1-y)*log(1 + exp(x%*%beta))) | |
return(-loglik) | |
} | |
# Prepare the data | |
outcome = rownames(attr(terms(fmla),"factors"))[1] | |
dfrTmp = model.frame(data) | |
x = as.matrix(model.matrix(fmla, data=dfrTmp)) | |
y = as.matrix(data[,match(outcome,colnames(data))]) | |
# Define initial values for the parameters | |
theta.start = rep(0,(dim(x)[2])) | |
names(theta.start) = colnames(x) | |
# Non-negative slopes constraint | |
lower = c(-Inf,rep(0,(length(theta.start)-1))) | |
# Calculate the maximum likelihood | |
mle = optim(theta.start,logl,x=x,y=y,hessian=T,lower=lower,method="L-BFGS-B") | |
# Obtain regression coefficients | |
beta = mle$par | |
# Calculate the Information matrix | |
# The variance of a Bernouilli distribution is given by p(1-p) | |
p = 1/(1+exp(-x%*%beta)) | |
V = array(0,dim=c(dim(x)[1],dim(x)[1])) | |
diag(V) = p*(1-p) | |
IB = t(x)%*%V%*%x | |
# Return estimates | |
out = list(beta=beta,vcov=solve(IB),dev=2*mle$value) | |
} | |
################################################################################ |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment