Created
July 30, 2017 16:48
-
-
Save Nikhil-Kasukurthi/25322e921def4cb14b4cf024327a23ea to your computer and use it in GitHub Desktop.
Here's how to use that Tensorflow API
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import hashlib | |
import io | |
import logging | |
import os | |
from lxml import etree | |
import PIL.Image | |
import tensorflow as tf | |
from object_detection.utils import dataset_util | |
from object_detection.utils import label_map_util | |
flags = tf.app.flags | |
flags.DEFINE_string('data_dir', '', 'Root directory to raw PASCAL VOC formated dataset.') | |
flags.DEFINE_string('annotations_dir', 'Annotations', | |
'(Relative) path to annotations directory.') | |
flags.DEFINE_string('output_path', '', 'Path to output TFRecord') | |
flags.DEFINE_string('label_map_path', 'data/pascal_label_map.pbtxt', | |
'Path to label map proto') | |
flags.DEFINE_boolean('ignore_difficult_instances', False, 'Whether to ignore ' | |
'difficult instances') | |
FLAGS = flags.FLAGS | |
def dict_to_tf_example(data, | |
dataset_directory, | |
label_map_dict, | |
ignore_difficult_instances=False, | |
image_subdirectory='images'): | |
"""Convert XML derived dict to tf.Example proto. | |
Notice that this function normalizes the bounding box coordinates provided | |
by the raw data. | |
Args: | |
data: dict holding PASCAL XML fields for a single image (obtained by | |
running dataset_util.recursive_parse_xml_to_dict) | |
dataset_directory: Path to root directory holding PASCAL dataset | |
label_map_dict: A map from string label names to integers ids. | |
ignore_difficult_instances: Whether to skip difficult instances in the | |
dataset (default: False). | |
image_subdirectory: String specifying subdirectory within the | |
PASCAL dataset directory holding the actual image data. | |
Returns: | |
example: The converted tf.Example. | |
Raises: | |
ValueError: if the image pointed to by data['filename'] is not a valid JPEG | |
""" | |
img_path = os.path.join(data['folder'],data['path']) | |
with tf.gfile.GFile('../Models/dart'+img_path, 'rb') as fid: | |
encoded_jpg = fid.read() | |
encoded_jpg_io = io.BytesIO(encoded_jpg) | |
image = PIL.Image.open(encoded_jpg_io) | |
if image.format != 'JPEG': | |
raise ValueError('Image format not JPEG') | |
key = hashlib.sha256(encoded_jpg).hexdigest() | |
width = int(data['size']['width']) | |
height = int(data['size']['height']) | |
xmin = [] | |
ymin = [] | |
xmax = [] | |
ymax = [] | |
classes = [] | |
classes_text = [] | |
truncated = [] | |
poses = [] | |
difficult_obj = [] | |
for obj in data['object']: | |
difficult = bool(int(obj['difficult'])) | |
if ignore_difficult_instances and difficult: | |
continue | |
difficult_obj.append(int(difficult)) | |
xmin.append(float(obj['bndbox']['xmin']) / width) | |
ymin.append(float(obj['bndbox']['ymin']) / height) | |
xmax.append(float(obj['bndbox']['xmax']) / width) | |
ymax.append(float(obj['bndbox']['ymax']) / height) | |
classes_text.append(obj['name'].encode('utf8')) | |
classes.append(label_map_dict[obj['name']]) | |
truncated.append(int(obj['truncated'])) | |
poses.append(obj['pose'].encode('utf8')) | |
example = tf.train.Example(features=tf.train.Features(feature={ | |
'image/height': dataset_util.int64_feature(height), | |
'image/width': dataset_util.int64_feature(width), | |
'image/filename': dataset_util.bytes_feature( | |
data['filename'].encode('utf8')), | |
'image/source_id': dataset_util.bytes_feature( | |
data['filename'].encode('utf8')), | |
'image/key/sha256': dataset_util.bytes_feature(key.encode('utf8')), | |
'image/encoded': dataset_util.bytes_feature(encoded_jpg), | |
'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')), | |
'image/object/bbox/xmin': dataset_util.float_list_feature(xmin), | |
'image/object/bbox/xmax': dataset_util.float_list_feature(xmax), | |
'image/object/bbox/ymin': dataset_util.float_list_feature(ymin), | |
'image/object/bbox/ymax': dataset_util.float_list_feature(ymax), | |
'image/object/class/text': dataset_util.bytes_list_feature(classes_text), | |
'image/object/class/label': dataset_util.int64_list_feature(classes), | |
'image/object/difficult': dataset_util.int64_list_feature(difficult_obj), | |
'image/object/truncated': dataset_util.int64_list_feature(truncated), | |
'image/object/view': dataset_util.bytes_list_feature(poses), | |
})) | |
return example | |
def main(_): | |
data_dir = FLAGS.data_dir | |
writer = tf.python_io.TFRecordWriter(FLAGS.output_path) | |
label_map_dict = label_map_util.get_label_map_dict(FLAGS.label_map_path) | |
annotations_dir = FLAGS.annotations_dir | |
examples_list = os.listdir(annotations_dir) | |
print(examples_list) | |
for idx, example in enumerate(examples_list): | |
print(example) | |
if idx % 100 == 0: | |
print('On image %d of %d', idx, len(examples_list)) | |
with tf.gfile.GFile(annotations_dir+'/'+example, 'r') as fid: | |
xml_str = fid.read() | |
xml = etree.fromstring(xml_str) | |
data = dataset_util.recursive_parse_xml_to_dict(xml)['annotation'] | |
tf_example = dict_to_tf_example(data, FLAGS.data_dir, label_map_dict, | |
FLAGS.ignore_difficult_instances) | |
writer.write(tf_example.SerializeToString()) | |
writer.close() | |
if __name__ == '__main__': | |
tf.app.run() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment