Skip to content

Instantly share code, notes, and snippets.

@Nikolaj-K
Last active November 13, 2025 13:15
Show Gist options
  • Select an option

  • Save Nikolaj-K/1ada0631b968635109fa1740c6f9bc69 to your computer and use it in GitHub Desktop.

Select an option

Save Nikolaj-K/1ada0631b968635109fa1740c6f9bc69 to your computer and use it in GitHub Desktop.
Probability Theory Statistics Master Midterm

Probability Theory 1 – Script skeleton

  • 2024W-Prob1__script.pdf: sections 1–5 (up to and including 5. Lebesgue-Integral)
  • 2025W-Prob1-Collection.pdf: sections 0–3 (up to and including 3. Das Lebesgue-Integral)

Notes:

  • Warning: I dropped \mathcal, since it doesn't render in gist
  • Likewise, _\# became _H
  • The items have rough importance rankings
    • roughly "important" vs "neutral" and "random"; I'll derank a few later
  • The exercises have a "done" if we actually did them in the session

[Script 2024] 1. Messbare Räume und Maße

Definitionen

Definition 1.1: Algebra $\star\star\star$
A family of subsets of $\Omega$ that contains $\Omega$ and is closed under complements and finite unions (equivalently finite intersections).

Definition 1.2: σ-Algebra $\star\star\star$
A family of subsets of $\Omega$ that contains $\Omega$ and is closed under complements and countable unions (equivalently countable intersections).

Definition 1.3: Messbarer Raum $\star\star\star$
A measurable space is a pair $(\Omega,{A})$ where ${A}$ is a σ-algebra on $\Omega$; sets in ${A}$ are called measurable.

Definition 1.5: Maß $\star\star\star$
A measure on $(\Omega,{A})$ is a map $\mu:{A}\to[0,\infty]$ with $\mu(\emptyset)=0$ and countable additivity on pairwise disjoint measurable sets.
σ-finite, finite measures, and probability measures are defined via additional total mass conditions.

Definition 1.6: Maßraum / Wahrscheinlichkeitsraum $\star\star\star$
A measure space is a triple $(\Omega,{A},\mu)$.
If $\mu$ is a probability measure $P$, the triple is called a probability space.

Definition 1.10: Atom eines Maßes $\star\star$
A point $\omega\in\Omega$ is an atom if ${\omega}$ is measurable and has positive measure under $\mu$.

Definition 1.13: Von $M$ erzeugte σ-Algebra $\sigma(M)$ $\star\star\star$
For $M\subseteq{P}(\Omega)$, $\sigma(M)$ is the intersection of all σ-algebras containing $M$, hence the smallest σ-algebra that contains $M$.

Definition (Spur / Trace) $\star\star$
For $K\subseteq\Omega$ and a family $M\subseteq{P}(\Omega)$, the trace of $M$ on $K$ is
$M\upharpoonright K := {M\cap K : M\in M}$, i.e. all intersections of sets in $M$ with $K$.

Theoreme

Satz 1.7: Eigenschaften von Maßen $\star\star\star$
Collects basic properties of measures: finite additivity on finitely many disjoint sets, monotonicity, σ-subadditivity, and the inclusion–exclusion formula for two sets.

Korollar 1.8: Maß von Differenzmengen und Komplementen $\star\star$
For $A\subseteq B$ with finite $\mu(B)$ one has $\mu(B\setminus A)=\mu(B)-\mu(A)$.
For finite measures, $\mu(A^c)=\mu(\Omega)-\mu(A)$ (for probabilities $ P(A^c)=1-P(A)$).

Satz 1.9: Stetigkeit von unten und oben $\star\star\star$
Measures are continuous from below for increasing sequences of sets and from above for decreasing sequences with finite starting measure.

Proposition 1.11: Abzählbarkeit der Atome in σ-endlichen Räumen $\star$
In a σ-finite measure space, the set of atoms is at most countable.

Lemma 1.12: Durchschnitt von σ-Algebren $\star\star$
The intersection of any family of σ-algebras on the same base set is again a σ-algebra.

Lemma 1.14: Monotonie der erzeugten σ-Algebra $\star\star$
If $M_1\subseteq M_2\subseteq{P}(\Omega)$, then $\sigma(M_1)\subseteq\sigma(M_2)$.

Proposition 1.15: Spur-σ-Algebra $\star\star$
For a σ-algebra ${A}$ on $\Omega$ and $K\subseteq\Omega$, the trace ${A}\upharpoonright K$ is a σ-algebra on $K$, called the trace σ-algebra.

Lemma 1.16: Spur und Erzeugung vertauschen $\star\star$
For $M\subseteq{P}(\Omega)$ and $K\subseteq\Omega$ one has
$\sigma(M\upharpoonright K)=\sigma(M)\upharpoonright K$, i.e. generating a σ-algebra and taking traces commute.


[Script 2024] 2. Äußere und Innere Maße

Definitionen

Definition 2.1: λ-System (Dynkin-System) $\star\star$
A family $D\subseteq{P}(\Omega)$ is a λ-system if it contains $\Omega$, is closed under taking differences of nested sets, and under countable increasing unions.

Definition 2.3: π-System $\star\star$
A family $M\subseteq{P}(\Omega)$ is a π-system if it is closed under finite intersections.

Definition 2.5: Von $M$ erzeugtes λ-System $\lambda(M)$ $\star\star$
$\lambda(M)$ is the intersection of all λ-systems containing $M$, hence the smallest λ-system containing $M$.

Definition 2.10: Prämaß $\star\star\star$
A premeasure on an algebra ${A}_0$ is a map $\mu:{A}_0\to[0,\infty]$ which is countably additive on disjoint sequences whose union stays in ${A}_0$.

Definition 2.11: Äußeres Maß $\mu^*$ $\star\star\star$
Given a premeasure $\mu$ on ${A}_0$, the outer measure
$\mu^*:{P}(\Omega)\to[0,\infty]$
is defined by covering sets with countable unions of ${A}_0$-sets and taking an infimum of sums of $\mu$.

Definition 2.12: Von außen messbare Mengen, ${A}^*$ $\star\star$
A set $A\subseteq\Omega$ is outer measurable (w.r.t. $\mu^*$) if
$\mu^*(M\cap A)+\mu^*(M\cap A^c)=\mu^*(M)$
for all $M\subseteq\Omega$; ${A}^*$ is the family of all such sets.

Theoreme

Lemma 2.2: Gleichheitsmenge zweier Maße ist λ-System $\star\star$
For two finite measures $\mu,\nu$ on $(\Omega,{A})$ with equal total mass, the set
$D={A\in{A}:\mu(A)=\nu(A)}$
is a λ-system.

Lemma 2.4: λ- und π-System ⇒ σ-Algebra $\star\star$
If $M$ is both a λ-system and a π-system, then $M$ is a σ-algebra.

Proposition 2.6: Minimalität von $\lambda(M)$ $\star\star$
$\lambda(M)$ is itself a λ-system and the smallest λ-system containing $M$.

Satz 2.7 (Sierpiński–Dynkin λ–π Theorem) $\star\star\star$
If $M$ is a π-system, then $\lambda(M)=\sigma(M)$, i.e. the λ-system generated by $M$ coincides with the σ-algebra generated by $M$.

Korollar 2.8: Eindeutigkeit endlicher Maße auf $\sigma(M)$ $\star\star\star$
If two finite measures agree on a π-system $M$ and have the same total mass, then they agree on the σ-algebra $\sigma(M)$.

Korollar 2.9: Eindeutigkeit bei σ-Endlichkeit $\star\star$
If two measures agree on a π-system $M$ and one is σ-finite on $M$, then the measures agree on $\sigma(M)$.

Lemma 2.13: Grundlegende Eigenschaften von $\mu^*$ $\star\star$
Outer measure $\mu^*$ is zero on the empty set, nonnegative, monotone, and σ-subadditive.

Korollar 2.14: Endliche Subadditivität und Charakterisierung der Außenmessbarkeit $\star\star$
Outer measures are finitely subadditive, and outer measurability can be checked with a $\le$ inequality rather than equality.

Lemma 2.15: ${A}^*$ ist eine Algebra $\star\star$
The class of outer measurable sets ${A}^*$ is closed under complements and finite unions, hence forms an algebra.

Lemma 2.16: σ-Additivität von $\mu^*$ auf disjunkten Familien in ${A}^*$ $\star\star$
For disjoint outer measurable sets $A_i$ one has
$\mu^*(M\cap\bigcup_i A_i)=\sum_i\mu^*(M\cap A_i)$ for all $M$.

Lemma 2.17: ${A}^*$ ist eine σ-Algebra $\star\star$
The class ${A}^*$ is closed under countable unions, hence is a σ-algebra.

Lemma 2.18: Übereinstimmung von $\mu$ und $\mu^*$ auf ${A}_0$ $\star\star$
For every $A\in{A}_0$, the outer measure $\mu^*(A)$ coincides with the original premeasure $\mu(A)$.

Lemma 2.19: ${A}_0 \subseteq {A}^*$ $\star\star$
Every set in the original algebra ${A}_0$ is outer measurable, so ${A}_0\subseteq{A}^*$.

Satz 2.20: Aus $(\mu,{A}_0)$ entsteht ein Maßraum $(\Omega,{A}^*,\mu^*)$ $\star\star\star$
The outer measurable sets ${A}^*$ form a σ-algebra and $\mu^*$ is a measure on $(\Omega,{A}^*)$ extending the premeasure $\mu$ and agreeing with it on ${A}_0$.

Satz 2.21 (Maßerweiterungssatz von Carathéodory) $\star\star\star$
A σ-finite premeasure on an algebra admits a unique extension to a measure on the σ-algebra generated by the algebra.


[Script 2024] 3. Maß auf $\mathbb{R}$

Definitionen

Definition 3.3: Halboffene Intervalle, Familie $J$ und $\varphi$ $\star\star$
For $-\infty\le a\le b\le\infty$, the half-open interval $(a,b]$ and family $J$ of such intervals are defined, and
$\varphi((a,b]) = F(b)-F(a)$ (or $0$ if $a=b$) for a given monotone right-continuous $F$.

Definition 3.5: Algebra $J^*$ $\star\star$
$J^*$ consists of all finite disjoint unions of half-open intervals from $J$, forming an algebra on $\mathbb{R}$.

Definition 3.7: Erweiterung $\varphi^*$ auf $J^*$ $\star\star$
For $A\in J^*$ written as a finite disjoint union of $(a_i,b_i]$, define
$\varphi^*(A):=\sum_i \varphi((a_i,b_i])$, extending $\varphi$ from $J$ to $J^*$.

Definition 3.13: Borelsche σ-Algebra ${B}(\mathbb{R})$ $\star\star\star$
The Borel σ-algebra on $\mathbb{R}$ is defined as ${B}(\mathbb{R}) := \sigma(J^*)$, the σ-algebra generated by $J^*$ (equivalently by various interval families).

Definition 3.18: Lebesgue-Maß $\lambda$ $\star\star\star$
Lebesgue measure $\lambda$ on $\mathbb{R}$ is the measure induced by $F(x)=x$ via the construction of $\mu_F$.

Definition 3.19: Verteilungsfunktion (cdf) $\star\star\star$
A distribution function is a monotone non-decreasing, right-continuous $F:\mathbb{R}\to[0,1]$ with limits $0$ at $-\infty$ and $1$ at $+\infty$, inducing a probability measure on $\mathbb{R}$.

Theoreme

Beispiel 3.1: Diskrete Verteilungen auf $\mathbb{N}$ $\star\star$
Constructs a probability measure on $(\mathbb{N},{P}(\mathbb{N}))$ from a sequence of nonnegative weights summing to $1$, covering all discrete distributions on $\mathbb{N}$.

Satz 3.2: Umordnung absolut konvergenter Reihen $\star\star$
Absolutely convergent series can be reordered arbitrarily without changing their sum.

Satz (Riemann’scher Umordnungssatz) $\star$
If a series is conditionally but not absolutely convergent, then for any $a\in\mathbb{R}$ there is a rearrangement whose sum is $a$.

Lemma 3.4: σ-Additivität von $\varphi$ auf $J$ $\star\star$
Shows that $\varphi$ is countably additive on $J$ whenever disjoint half-open intervals have a union still in $J$.

Lemma 3.6: $J^*$ ist eine Algebra $\star\star$
Shows that $J^*$ is closed under complements and finite intersections, hence is an algebra.

Proposition 3.8: Wohldefiniertheit von $\varphi^*$ $\star\star$
Proves that $\varphi^*$ does not depend on the particular representation of a set in $J^*$ as a disjoint union of basic intervals.

Lemma 3.9: Eigenschaften von $\varphi^*$ $\star\star$
Establishes that $\varphi^*$ is a premeasure on $J^*$: zero on $\emptyset$, σ-additive on disjoint unions in $J^*$, and σ-finite.

Lemma 3.10: σ-Additivität auf $J$ vs. $J^*$ $\star\star$
States that σ-additivity of $\varphi$ on $J$ is equivalent to σ-additivity of $\varphi^*$ on $J^*$.

Lemma 3.11: Untere Abschätzung durch Zerlegung $\star\star$
If disjoint intervals $(a_i,b_i]$ lie inside $(a,b]$, then
$\sum_i(F(b_i)-F(a_i))\le F(b)-F(a)$.

Lemma 3.12: Obere Abschätzung durch Überdeckung $\star\star$
If $(a,b]$ is contained in a union of intervals $(a_i,b_i]$, then
$F(b)-F(a)\le \sum_i(F(b_i)-F(a_i))$.

Proposition 3.14: Alternative Erzeuger von ${B}(\mathbb{R})$ $\star\star$
Shows that the Borel σ-algebra can equally be generated by open intervals, closed intervals, rays of the form $(-\infty,b]$ or $(-\infty,b)$.

Proposition 3.15: ${B}(\mathbb{R}) = \sigma(\text{offene Mengen})$ $\star\star$
Shows that ${B}(\mathbb{R})$ is the σ-algebra generated by all open subsets of $\mathbb{R}$.

Korollar 3.16: Einpunkt-, offene und abgeschlossene Mengen sind borelsch $\star\star$
Concludes that singletons, open sets, and closed sets in $\mathbb{R}$ are all Borel measurable.

Satz 3.17: Existenz und Eindeutigkeit von $\mu_F$ $\star\star\star$
For each monotone right-continuous $F$, there exists a unique σ-finite measure $\mu_F$ with $\mu_F((a,b])=F(b)-F(a)$.

Satz 3.20: Maß ⇒ Verteilungsfunktion $\star\star\star$
Conversely, any σ-finite measure on $(\mathbb{R},{B}(\mathbb{R}))$ arises from a monotone right-continuous $F$ via $\varphi((a,b])=F(b)-F(a)$.

Korollar 3.21: Atome und Sprungstellen $\star\star$
For such measures, $\mu({a})$ equals the jump of $F$ at $a$, so atoms correspond exactly to jump points of $F$.


[Script 2024] 4. Messbare Abbildungen und Zufallsvariablen

Definitionen

Definition 4.1: Urbild unter $f$ $\star\star$
For $f:\Omega\to\Omega'$, the preimage
$f^{-1}(A')={\omega\in\Omega : f(\omega)\in A'}$
is defined for all $A'\subseteq\Omega'$.

Definition 4.2: Messbare Abbildung und Zufallsvariable $\star\star\star$
A map $f:(\Omega,{A})\to(\Omega',{A'})$ is ${A}$–${A'}$-measurable if $f^{-1}(A')\in{A}$ for all $A'\in{A'}$.
Such an $X:(\Omega,{A},P)\to(\Omega',{A'})$ is called an $\Omega'$-valued random variable.

Definition 4.3: Von $(f_i)$ erzeugte σ-Algebra $\sigma(f_i, i\in I)$ $\star\star$
For maps $f_i:\Omega\to\Omega'$, the σ-algebra they generate is
$\sigma(f_i, i\in I):=\sigma({f_i^{-1}(A') : A'\in{A'}, i\in I})$.

Definition 4.10: Erweiterte reelle Zahlen und ${B}(\overline{\mathbb{R}})$ $\star\star$
The extended reals $\overline{\mathbb{R}}=\mathbb{R}\cup{-\infty,\infty}$ are introduced, with $K={[-\infty,t] : t\in\mathbb{R}}$ and
${B}(\overline{\mathbb{R}}):=\sigma(K)$ as the Borel σ-algebra on $\overline{\mathbb{R}}$.

Definition 4.11: Rechenregeln in $\overline{\mathbb{R}}$ $\star\star$
Specifies how to add and multiply finite real numbers with $\pm\infty$ (and that $\infty-\infty$ is undefined) to make sense of arithmetic in $\overline{\mathbb{R}}$.

Definition 4.16: Indikatorfunktion $1_A$ $\star\star$
The indicator function $1_A:\Omega\to{0,1}$ takes value $1$ on $A$ and $0$ outside $A$.

Definition 4.19: Einfache Funktion $\star\star\star$
A simple function is a finite linear combination
$f=\sum_{i=1}^n \alpha_i 1_{A_i}$
with measurable sets $A_i$ and real coefficients $\alpha_i$.

Theoreme

Proposition (nach 4.1): Urbildoperator und Mengenoperationen $\star\star$
Shows that preimages commute with unions, intersections, and complements (and hence with countable unions and intersections).

Proposition 4.4: Messbarkeit über einem Erzeuger $M'$ $\star\star$
If ${A'}=\sigma(M')$ and $M={f^{-1}(M') : M'\in M'}$, then $\sigma(f)=\sigma(M)$ and $f$ is measurable iff $M\subseteq{A}$.

Lemma 4.5: Alternative Beschreibung von $\sigma(f_i)$ $\star\star$
Gives an explicit description of $\sigma(f_i,i\in I)$ via finite intersections of preimages of sets in ${A'}$.

Proposition 4.6: Komposition messbarer Abbildungen $\star\star$
The composition of two measurable maps is measurable.

Lemma 4.7: Stetigkeit und Urbilder offener Mengen $\star\star$
For metric spaces, a map is continuous iff preimages of open sets are open.

Proposition 4.8: Stetige Funktionen $\mathbb{R}\to\mathbb{R}$ sind Borel-messbar $\star\star$
Every continuous function $f:\mathbb{R}\to\mathbb{R}$ is ${B}(\mathbb{R})$–${B}(\mathbb{R})$-measurable.

Proposition 4.9: Rechenregeln für messbare Funktionen $\star\star\star$
Sums, scalar multiples, products, and suitable quotients of real-valued measurable functions are again measurable.

Lemma 4.12: ${B}(\overline{\mathbb{R}})$ einschränkt sich auf ${B}(\mathbb{R})$ $\star\star$
The Borel σ-algebra on $\overline{\mathbb{R}}$ restricts to the usual Borel σ-algebra on $\mathbb{R}$, and $\mathbb{R}$ itself is Borel in $\overline{\mathbb{R}}$.

Korollar 4.13: Messbarkeit nach $\mathbb{R}$ ⇒ Messbarkeit nach $\overline{\mathbb{R}}$ $\star\star$
If $f$ is measurable as a map into $\mathbb{R}$, it is also measurable as a map into $\overline{\mathbb{R}}$.

Korollar 4.14: Struktur von ${B}(\overline{\mathbb{R}})$-Mengen $\star$
Any Borel set in $\overline{\mathbb{R}}$ can be written as a Borel subset of $\mathbb{R}$ plus possibly $\pm\infty$.

Korollar 4.15: Charakterisierung der Messbarkeit nach ${B}(\mathbb{R})$ $\star\star$
A map $f:\Omega\to\overline{\mathbb{R}}$ is ${A}$–${B}(\overline{\mathbb{R}})$-measurable iff $f^{-1}(B)$, $f^{-1}({-\infty})$, and $f^{-1}({\infty})$ are in ${A}$.

Lemma 4.17: Messbarkeit von Indikatorfunktionen $\star\star$
The indicator $1_A$ is measurable iff $A$ is measurable.

Proposition 4.18: Supremum, Infimum, limsup, liminf sind messbar $\star\star$
Pointwise $\sup$, $\inf$, $\limsup$ and $\liminf$ of sequences of measurable functions are measurable, and the convergence set
${\lim f_n\text{ exists in }\mathbb{R}}$ is measurable.

Korollar 4.20: Einfache Funktionen sind messbar $\star\star$
Every simple function is measurable both as a map into $\mathbb{R}$ and into $\overline{\mathbb{R}}$.

Proposition 4.21: Charakterisierung einfacher Funktionen $\star\star$
A function is simple iff it is measurable and takes only finitely many values, and it admits a representation with disjoint level sets.

Satz 4.22: Approximation nichtnegativer messbarer Funktionen $\star\star\star$
Every nonnegative measurable function can be approximated from below by an increasing sequence of simple functions (uniformly if the function is bounded).


[Script 2024] 5. Lebesgue-Integral

Definitionen

Definition 5.0: Informelle Definition des Integrals $\star\star$
Introduces the integral for simple functions, extends it to nonnegative measurable functions via increasing simple approximations, and then to general measurable functions via positive and negative parts.

Definition 5.2: Lebesgue-Integral für einfache Funktionen $\star\star\star$
For a nonnegative simple function $f=\sum_{i=1}^n\alpha_i 1_{A_i}$, the Lebesgue integral is
$\displaystyle \int f,d\mu := \sum_{i=1}^n \alpha_i \mu(A_i)$.

Definition 5.6: Lebesgue-Integral für nichtnegative messbare Funktionen $\star\star\star$
For $f\ge0$ measurable and simple $f_n\uparrow f$, define
$\displaystyle \int f,d\mu := \lim_{n\to\infty}\int f_n,d\mu$.

Definition 5.7: Positiv- und Negativteil $\star\star\star$
For measurable $f$, define $f^+=\max(f,0)$ and $f^-=-\min(f,0)$ so that $f=f^+-f^-$.

Definition 5.8: Integrierbar, quasi-integrierbar $\star\star\star$
$f$ is integrable if both $\int f^+,d\mu$ and $\int f^-,d\mu$ are finite.
It is quasi-integrable if at least one is finite; for quasi-integrable $f$ the integral is
$\displaystyle \int f,d\mu := \int f^+,d\mu - \int f^-,d\mu$.

Definition 5.9: Räume $L^1$ und $L$ $\star\star\star$
Defines $L^1(\Omega,{A},\mu)$ as the set of integrable functions and $L(\Omega,{A},\mu)$ as the set of quasi-integrable functions, with the usual $L^1$-“norm” $|f|_1=\int|f|,d\mu$.

Definition 5.10: Integral über eine Menge $A$ $\star\star$
For $f\in L(\mu)$ and $A\in{A}$, the integral over $A$ is
$\displaystyle \int_A f,d\mu := \int f\cdot 1_A,d\mu$.

Definition 5.11: Erwartungswert und Varianz $\star\star\star$
On a probability space, the expectation is $EX=\int X,dP$ for $X\in L(P)$ and the variance is
$\mathrm{Var}(X)=\int (X-EX)^2,dP$ for $X\in L^1(P)$.

Definition 5.12: Nullmengen und „fast überall“ / „fast sicher“ $\star\star\star$
Defines $\mu$-null sets, “$f\in B$ $\mu$-fast überall” (a.e.), and “$X\in B$ fast sicher” (a.s.) when the complement has measure zero.

Definition 5.20: Bildmaß (Pushforward) $f_H \mu$ $\star\star$
For measurable $f:(\Omega,{A})\to(\Omega',{A'})$, the pushforward measure is
$(f_H \mu)(A'):=\mu(f^{-1}(A'))$.
(In the PDF notation, the \# is written as a hash symbol.)

Definition 5.30: Dichte $\star\star\star$
If $\nu(A)=\int_A f,d\mu$ as in Proposition 5.29, then $f$ is called the density of $\nu$ with respect to $\mu$ (denoted $d\nu/d\mu=f$).

Theoreme

Lemma 5.1: Darstellung unabhängig für einfache Funktionen $\star\star$
Shows that the integral of a simple function does not depend on which particular simple representation one uses.

Lemma 5.3: Monotonie des Integrals für einfache Funktionen $\star\star$
If $0\le f\le g$ for nonnegative simple $f,g$, then $\int f,d\mu\le\int g,d\mu$.

Lemma 5.4: Monotone Folgen einfacher Funktionen $\star\star$
For $0\le f_1\le f_2\le\cdots\uparrow f$ with a simple $g\le f$, the integrals $\int f_n,d\mu$ form an increasing real sequence and dominate $\int g,d\mu$.

Korollar 5.5: Unabhängigkeit der Approximation in der Definition $\star\star$
For two sequences of simple functions increasing to the same $f\ge0$, the limits of their integrals coincide; thus the integral is well defined.

Lemma 5.13: $\int f,d\mu = 0 \iff f = 0$ a.e. für $f\ge0$ $\star\star$
A nonnegative measurable function has integral zero iff it vanishes almost everywhere.

Proposition 5.14: Gleiche Funktionen a.e. ⇒ gleiches Integral $\star\star\star$
If $f\in L(\mu)$ and $g$ is measurable with $f=g$ almost everywhere, then $g\in L(\mu)$ and $\int g,d\mu=\int f,d\mu$.

Proposition 5.15: $L^1$-Funktionen sind fast überall endlich $\star\star$
Any $f\in L^1(\mu)$ is finite almost everywhere and has a real-valued measurable representative with the same integral.

Satz 5.16: Linearität und Monotonie des Integrals $\star\star\star$
The integral is linear on $L(\mu)$ (for well-defined sums and scalar multiples) and monotone in the sense that $f\le g$ a.e. implies $\int f,d\mu\le\int g,d\mu$.

Proposition 5.17: Äquivalente Charakterisierungen von $L^1$ $\star\star$
Lists equivalent conditions for $f$ to lie in $L^1(\mu)$, including integrability of $|f|$ and domination by an integrable function.

Korollar 5.18: $\max(f,g)$ und $\min(f,g)$ sind in $L^1$ $\star$
If $f,g\in L^1(\mu)$, then $\max(f,g)$ and $\min(f,g)$ are also in $L^1(\mu)$.

Korollar 5.19: Dreiecksungleichung für Integrale $\star\star$
The integral satisfies $|\int f,d\mu|\le\int |f|,d\mu$ for $f\in L(\mu)$.

Proposition 5.21: Bildmaß ist ein Maß $\star\star$
The pushforward $f_H \mu$ is a measure on $(\Omega',{A'})$ with total mass $\mu(\Omega)$, preserving finiteness and probability.
(In the PDF notation, the \# is written as a hash symbol.)

Transformationssatz 5.22: $\int (g\circ f),d\mu = \int g,d(f_H \mu)$ $\star\star\star$
For measurable $f$ and $g$, one has
$\displaystyle \int_\Omega (g\circ f),d\mu = \int_{\Omega'} g,d(f_H \mu)$,
providing a general change-of-variables formula.
(Again, the \# is a hash symbol in the PDF.)

Lemma 5.23: Vergleich mit einfacher Funktion unter Monotonie $\star\star$
If $0\le g\le\lim f_n$ with $g$ simple and $0\le f_1\le f_2\le\cdots$, then
$\int g,d\mu\le\lim_{n\to\infty}\int f_n,d\mu$.

Satz 5.24: Monotone Konvergenz (Beppo-Levi) $\star\star\star$
For $0\le f_1\le f_2\le\cdots$ with $f_n\uparrow f$, one has
$\displaystyle \lim_{n\to\infty}\int f_n,d\mu = \int f,d\mu$.

Satz 5.25: Monotone Konvergenz mit Unterabschätzung $\star\star$
If $g\le f_1\le f_2\le\cdots\uparrow f$ and $\int g^-,d\mu<\infty$, then
$\lim_n\int f_n,d\mu = \int f,d\mu$
(a monotone convergence theorem for not-necessarily-nonnegative sequences).

Proposition 5.26: Riemann- und Lebesgue-Integral stimmen überein $\star\star$
If $f:[a,b]\to\mathbb{R}$ is Riemann integrable, then it is Lebesgue integrable w.r.t. Lebesgue measure and the two integrals coincide.

Korollar 5.27: Uneigentliche Riemann-Integrale und Lebesgue-Integral auf $[0,\infty)$ $\star\star$
For $f\ge0$ Riemann-integrable on $[0,\infty)$ in the improper sense, the improper Riemann integral equals the Lebesgue integral over $[0,\infty)$.

Proposition 5.29: Konstruktion eines Maßes aus einer Dichte $\star\star\star$
Given $f\ge0$ measurable, the map $\nu(A)=\int_A f,d\mu$ defines a measure, and for $g\in L^1(\nu)$ one has
$\displaystyle \int g,d\nu=\int fg,d\mu$.


Probability Theory 1 – Exercises collection skeleton

Section 0: Einführung — Aufgaben

Exercise 0.5.1: Basic set identities $\star\star$ done

(a) Distributive law for unions over indexed intersections
(b) De Morgan law for complements of unions.

Exercise 0.5.2: Infinite unions/intersections of open/closed sets $\star\star$ done

(a) Arbitrary unions of open sets are open
(b) Arbitrary intersections of closed sets are closed (via De Morgan).

Exercise 0.5.3: Finite unions/intersections of open/closed sets $\star\star$ done

(a) Finite intersections of open sets are open
(b) Finite unions of closed sets are closed.

Exercise 0.5.4: Validity of algebraic set identities $\star\star$ done

Check which of (a)–(d) hold in general; for those that fail, find sufficient conditions (e.g. inclusions, distributivity, difference rules).

Exercise 0.5.5: Outcome space of an elimination tournament $\star$

Describe the set of all possible results of an $n$-round knockout tournament with $2^n$ players and fixed bracket.


Section 1: Wahrscheinlichkeitsmaß und Wahrscheinlichkeitsraum

Exercise 1.1: Banach–Tarski and non-measurable sets in $\mathbb{R}^3$ $\star$

Use the Banach–Tarski paradox to argue that certain subsets of $\mathbb{R}^3$ cannot have a (countably additive) volume.

Exercise 1.2: Properties of σ-algebras $\star\star\star$

(a) A lemma regarding the trivial σ-algebra ${\varnothing,\Omega}$
(b) A lemma regarding the power set ${P}(\Omega)$
(c) A counterexample: an algebra that is not a σ-algebra
(d) A lemma about countable/finite sets and σ-algebras.

Exercise 1.3: Equivalent definitions of algebras and σ-algebras $\star\star$

(a) Replace closure under finite unions by closure under finite intersections in the definition of an algebra
(b) Analogous equivalence for σ-algebras (countable unions vs. countable intersections).

Exercise 1.4: Closure properties of algebras and σ-algebras $\star\star$

(a) An algebra is closed under finite unions, intersections, set difference, and symmetric difference
(b) Every σ-algebra is an algebra.

Exercise 1.5: Finite algebra ⇒ σ-algebra $\star\star$ done

Show that an algebra on $\Omega$ with only finitely many sets is automatically a σ-algebra.

Exercise 1.6: Countable unions in a σ-algebra $\star\star$

Verify that if $A$ is a σ-algebra and $A_i \in A$, then $\bigcup_{i=1}^\infty A_i \in A$.

Exercise 1.7: Union of σ-algebras need not be a σ-algebra $\star\star$ done

Give an example of σ-algebras $A,B$ on $\Omega$ with $A\cup B$ not a σ-algebra; identify which axiom fails.

Exercise 1.8: Discrete probability measures $\star\star$

(a) Poisson distribution on $\Omega = {0,1,2,\dots}$ defines a probability measure
(b) General discrete probability on a (at most) countable set via weights $p(\omega_i)$.

Exercise 1.9: Algebras on $(0,1]$ via half-open intervals $\star\star\star$ done

Show: $J$ (single intervals $(a,b] \subset (0,1]$) is not an algebra; $J^*$ (finite disjoint unions) is an algebra but not a σ-algebra.

Exercise 1.10: Analogous algebra on $\mathbb{R}$ $\star\star$

Define $J_{\mathbb{R}}$ with $(a,b⟩$ and $J_{\mathbb{R}}^*$ as finite disjoint unions; show it is an algebra on $\mathbb{R}$, but not a σ-algebra.

Exercise 1.11: Limits of unions/intersections of intervals $\star\star$ done

Analyze $\bigcup_n(-\infty,t_n]$, $\bigcap_n(-\infty,t_n]$ for monotone sequences $t_n$ with finite or infinite limits.

Exercise 1.12: Independence of interval decomposition $\star\star\star$

Show that for $A\subset(0,1]$ represented as two finite disjoint unions of intervals, the length-based probability $P(A)$ is well defined (independent of representation).

Exercise 1.13: Intersections and unions of σ-algebras $\star\star$ done

(a) Arbitrary intersection of σ-algebras is a σ-algebra
(b) Union of two σ-algebras is usually not a σ-algebra; identify possible axiom violations.

Exercise 1.14: Generated σ-algebras $\star\star\star$ done

(a) If $A$ is a σ-algebra, then $\sigma(A)=A$
(b) Monotonicity: $M\subset M'\Rightarrow \sigma(M)\subset\sigma(M')$
(c) Stability: $M\subset M'\subset\sigma(M)\Rightarrow\sigma(M')=\sigma(M)$.

Exercise 1.15: Open subsets of $(0,1]$ are Borel $\star\star$

Show that every open set in the subspace $(0,1]$ lies in ${B}((0,1])$.

Exercise 1.16: Monotone class lemma $\star\star\star$ done

(a) Intersection of monotone classes is a monotone class
(b) For an algebra $A$, the smallest monotone class containing $A$ coincides with $\sigma(A)$.

Exercise 1.17: Basic properties of a probability measure $\star\star$

Prove:
(a) $P(\varnothing)=0$
(b) Monotonicity $A\subset B\Rightarrow P(A)\le P(B)$
(c) $P(A)\le1$
(d) $P(\Omega\setminus A)=1-P(A)$
(e) Finite additivity for disjoint sets
(f) Subadditivity for countable unions
(g) Inclusion–exclusion for two sets.

Exercise 1.18: General inclusion–exclusion theorem $\star\star$

Present and prove the general finite inclusion–exclusion formula for probabilities $P(\bigcup_{i=1}^n A_i)$ by induction.

Exercise 1.19: Countable unions of null/full sets $\star\star$ done

(a) Union of countably many null sets is null
(b) Intersection of countably many full-measure sets has probability 1.

Exercise 1.20: Thickening disjoint intervals $\star$

Given disjoint intervals $(a_i,b_i⟩$ and initial “thickenings” with parameters $\delta_i$, adjust the $\delta_i$ to keep disjointness while still covering a target interval $(u,v⟩$.

Exercise 1.21: Approximating half-lines $\star\star$

Show identities like
$(-\infty,t) = \bigcup_{n}(-\infty,t-1/n)$ and
$(-\infty,t] = \bigcap_{n}(-\infty,t+1/n)$.

Exercise 1.22: Continuity from above $\star\star$

If $A_n\downarrow A$, prove $P(A_n)\downarrow P(A)$.

Exercise 1.23: No atoms for the uniform on $[0,1]$ $\star\star$ done

For $P$ with cdf $F(x)=0$ for $x<0$, $F(x)=x$ on $[0,1]$, $F(x)=1$ for $x>1$, show $P({x})=0$ for all $x$.

Exercise 1.24: Generators of ${B}(\mathbb{R})$ $\star\star\star$ done

Show that each of these families generates the Borel σ-algebra:
(a) $(-\infty,b]$
(b) $(-\infty,b)$
(c) $(a,b)$
(d) $[a,b]$.

Exercise 1.25: Vitali construction of a non-measurable set $\star\star\star$

Construct a Vitali set $M\subset(0,1]$ via the equivalence relation $x\sim y \iff x-y\in\mathbb{Q}$ and show it cannot have a Lebesgue measure.

Exercise 1.26: Trace σ-algebra vs. generated σ-algebra $\star\star$

Show $\sigma(K|M) = \sigma(K)|M$ for $K\subset{P}(\Omega)$, $M\subset\Omega$.

Exercise 1.27: Two descriptions of ${B}((0,1])$ $\star\star$

Show that $\sigma(J)$ (from 1.9) coincides with ${(0,1]\cap A : A\in{B}(\mathbb{R})}$.

Exercise 1.28: Trace on $\mathbb{N}$ $\star\star$ done

Show $D := {A\cap\mathbb{N} : A\in{B}(\mathbb{R})} = {P}(\mathbb{N})$.

Exercise 1.29: Borel σ-algebra on $[c,d]$ $\star\star$

For $0<c<d<1$, show that the two σ-algebras
$B_1 := {A\cap[c,d] : A\in{B}((0,1])}$ and
$B_2 := {B}((c,d]) \cup {A\cup{c}: A\in{B}((c,d])}$
coincide.

Exercise 1.30: Restriction of Lebesgue measure and cdf $\star\star$

(a) Re-derive ${A\cap(0,1] : A\in{B}(\mathbb{R})} = {B}((0,1])$
(b) Define $\mu(B) := \lambda(B\cap(0,1])$ and show it is a probability on $(\mathbb{R},{B}(\mathbb{R}))$ with the given cdf and that $\mu(C)=\lambda(C)$ for $C\subset(0,1]$
(c) Given a probability $\mu$ with that cdf, show its restriction to $(0,1]$ equals $\lambda$.

Exercise 1.31: Probability measures on bounded intervals $\star\star$

(Conceptual) Construction of uniform probability measures on $(a,b]$, on $[0,1]$, and analogs on other bounded intervals via restriction and renormalization.

Exercise 1.32: Decomposition of a cdf $\star\star$

Given a cdf $F$ with standard properties, decompose $F = c_1F_1 + c_2F_2$ into a continuous part and a purely atomic part $F_2(x) = \sum_i \alpha_i 1_{[z_i,\infty)}(x)$.

Exercise 1.33: Lebesgue measure on $\mathbb{R}$ $\star\star\star$

Construct the global Lebesgue measure $\lambda$ on $(\mathbb{R},{B}(\mathbb{R}))$ from restrictions to intervals $\Omega_n=(n-1,n]$:
(a) Show $\lambda$ is σ-finite and satisfies the measure axioms
(b) Show $\lambda((a,b])$ equals the length $b-a$.


Section 2: Messbare Abbildungen und Zufallsvariable

Exercise 2.1: Basic properties of preimages $\star\star\star$ done

Show that $T^{-1}$ preserves unions, intersections, and set differences.

Exercise 2.2: Pushforward measure $\star\star\star$ done

For $T$ measurable, show $P_{T^{-1}}(A') := P(T^{-1}(A'))$ is a probability measure on $(\Omega',A')$.

Exercise 2.3: Simple measurable maps $\star\star$ done

(a) Any constant map is measurable
(b) A finitely-valued $T:\Omega\to\mathbb{R}$ is measurable iff all singletons’ preimages are measurable.

Exercise 2.4: Joint σ-algebra generated by a family of maps $\star\star$ done

Given a family ${f_i}$, show “all $f_i$ are measurable” is equivalent to $M\subset A$, where $M$ is the preimage system and $\sigma(M)$ is the σ-algebra generated by the family.

Exercise 2.5: Monotone functions are Borel-measurable $\star\star$

Show that every non-decreasing $f:\mathbb{R}\to\mathbb{R}$ is ${B}(\mathbb{R})$-measurable, via the structure of $f^{-1}((-\infty,b])$.

Exercise 2.6: Continuity ⇒ measurability $\star\star$

Use that preimages of open sets are open and that open sets are Borel to prove every continuous $f:\mathbb{R}\to\mathbb{R}$ is Borel-measurable.

Exercise 2.7: Images of measurable sets $\star\star$ done

(a) Construct a measurable map whose image of a measurable set is not measurable in the target σ-algebra
(b) Show that a continuous map may send open sets to non-open sets.

Exercise 2.8: Algebraic operations on measurable functions $\star\star\star$

Given $T_1,T_2$ measurable:
(a) Show measurability of the product $T_1T_2$
(b) If $T_2\neq0$, show measurability of $T_1/T_2$ via composition with $x\mapsto1/x$.

Exercise 2.9: Intersection σ-algebra on a subset $\star\star$

Show ${B\cap A : A\in{A}} = {A\in{A} : A\subset B}$.

Exercise 2.10: Measurability via restriction to a partition $\star\star$

Given a countable cover $\Omega=\bigcup A_n$, show $T$ is measurable iff each restriction $T_n$ to $A_n$ is measurable.

Exercise 2.11: Infimum, supremum, lim inf, lim sup $\star\star$

Recall and prove:
(a) Proposition 2.1 (approximation of sup/inf by elements of the set)
(b) Lemma 2.2 (limit of a monotone sequence = sup/inf)
(c) Proposition 2.3 (definitions and formulas for lim inf and lim sup).

Exercise 2.12: Measurable sets of pointwise convergence $\star\star$

For measurable $T_n,T$, show the set ${\omega : T_n(\omega)\to T(\omega)}$ lies in ${A}$.

Exercise 2.13: Borel σ-algebra on extended reals $\star\star$

Show ${B}(\overline{\mathbb{R}})$ is generated by $(-\infty,b]$ plus the singletons ${-\infty}$ and ${\infty}$.

Exercise 2.14: Trace relation of Borel σ-algebras $\star\star$

Show ${B}(\mathbb{R})$ is the trace σ-algebra of ${B}(\overline{\mathbb{R}})$ on $\mathbb{R}$.

Exercise 2.15: Measurability via $\mathbb{R}$ vs. $\overline{\mathbb{R}}$ $\star\star$

Show $T:\Omega\to\mathbb{R}$ is ${A}$–${B}(\mathbb{R})$ measurable iff it is ${A}$–${B}(\overline{\mathbb{R}})$ measurable.

Exercise 2.16: Measurable max and min $\star\star$ done

Show that if $S,T$ are extended-real-valued measurable maps, then $\max(S,T)$ and $\min(S,T)$ are measurable.

Exercise 2.17: Reciprocal and log of a measurable function $\star\star$ done

(a) Show the extended-valued map $x\mapsto1/f(x)$ (with $\infty$ at zeros) is measurable
(b) For $f\ge0$, show the extended-valued $\log f$ (with $-\infty$ at zeros) is measurable.

Exercise 2.18: Arithmetic with extended-real measurable functions $\star\star\star$ done

Using truncations $S_n,T_n$:
(a) Show measurable $S,T$ ⇒ measurable $S+T$ (when well-defined)
(b) Show measurability of $ST$
(c) Show measurability of $S/T$ where defined.

Exercise 2.19: Pathology with non-measurable sets $\star\star$

Take a non-measurable $A$, define $f=1_A, g\equiv1$, and verify that although $f,g$ are measurable into the trivial σ-algebra ${\varnothing,\mathbb{R}}$, the set ${f=g}=A$ is not Borel-measurable.

Exercise 2.20: Egorov’s theorem $\star\star\star$

On a probability space, show that pointwise a.s. convergence of $T_n\to T$ implies: for every $\eta>0$ there exists $A$ with $P(A)<\eta$ such that $T_n\to T$ uniformly on $A^c$.

Exercise 2.21: σ(T) and measurability $\star\star$

(a) Show $\sigma(T^{-1}(A'))$ is a σ-algebra on $\Omega$ (the σ-algebra generated by $T$)
(b) Show $T$ is measurable w.r.t. ${A},A'$ iff $\sigma(T)\subset{A}$.

Exercise 2.22: W-transformation of a cdf $\star\star$

For a strictly increasing, continuous cdf $F$ of $X$, show $F(X)$ has the standard uniform-type distribution
$G(x)=0$ for $x\le0$, $G(x)=x$ for $0<x<1$, $G(x)=1$ for $x\ge1$ (the W-transform).

Exercise 2.23: Restriction of a measurable map $\star\star$

Show that if $T$ is measurable on $(\Omega,{A})$, then its restriction $T|_{\Omega_0}$ is measurable on $(\Omega_0,{A}\cap\Omega_0)$.

Exercise 2.24: Approximation by simple functions $\star\star\star$

Show any extended-real measurable $T$ can be approximated pointwise by simple measurable $T_n$, with monotone approximation for $T\ge0$ or $T\le0$, and uniform convergence if $T$ is bounded.


Section 3: Das Lebesgue-Integral

Exercise 3.1: Independence of simple-function representation $\star\star\star$

Show the Lebesgue integral of a simple function is independent of the particular finite sum representation.

Exercise 3.2: Structure of simple functions and their integrals $\star\star$

On a probability space:
(a) Show the simple functions form a vector space
(b) Show the map $T\mapsto\int T,dP$ is linear
(c) Show any simple $T$ can be written using a partition of $\Omega$
(d) On $\Omega=\mathbb{N}$ with counting σ-algebra, show the indicator family ${1_{{n}}}$ is linearly independent.

Exercise 3.3: Integrability of $\exp$ on $(0,1]$ $\star\star$

On $((0,1],{B},\lambda)$: show $\exp$ is measurable, the Lebesgue integral $\int_0^1 e^x,d\lambda$ exists, and compute it via simple-function approximation.

Exercise 3.4: Integrals of indicators of rationals/irrationals $\star\star\star$

On $(0,1]$ with Lebesgue measure, show $\int 1_{\mathbb{Q}\cap(0,1]}d\lambda=0$ and $\int 1_{(\mathbb{R}\setminus\mathbb{Q})\cap(0,1]}d\lambda=1$.

Exercise 3.5: Integral as supremum over simple minorants $\star\star\star$

For $S\ge0$ measurable, show $\int S,dP = \sup{\int T,dP : 0\le T\le S,\ T\ \text{simple}}$.

Exercise 3.6: Integrals on a countable probability space $\star\star$

On $\Omega=\mathbb{N}$ with $P({n})=p_n$, compute $\int T,dP$ for $T\ge0$ in terms of $\sum T(n)p_n$.

Exercise 3.7: Failures of monotone convergence when assumptions are dropped $\star\star$

Provide counterexamples showing:
(a) Without $T_n\ge0$, monotone convergence can fail
(b) Without monotonicity, it can fail
(c) For decreasing $T_n$, even with $T_n\ge0$, the naive “downward” version can fail.

Exercise 3.8: Relation Riemann vs. Lebesgue integral on $[a,b]$ $\star\star\star$

(a) If $f:[a,b]\to[0,\infty)$ is Riemann-integrable, then it is Lebesgue-integrable with the same value
(b) Give a function Lebesgue-integrable but not Riemann-integrable
(c) Give $f:\mathbb{R}\to\mathbb{R}$ that is improperly Riemann-integrable but not Lebesgue-integrable.

Exercise 3.9: Measurability and decomposition into positive/negative parts $\star\star$

(a) For extended-real measurable $S,T$, prove measurability of $S+T$ when well-defined
(b) Show $T$ is measurable iff its positive and negative parts $T^+,T^-$ are measurable.

Exercise 3.10: $M$ and $L^1(P)$ as vector spaces $\star\star$

(a) $M$: the space of real-valued measurable functions, is a vector space
(b) $L^1(P)$ is a vector space, and $\int T,dP$ is linear
(c) Show $L^1(P)$ is infinite-dimensional
(d) Show $|T|_1 := \int|T|,dP$ is a seminorm on $L^1(P)$.

Exercise 3.11: $L^p$ spaces and inner product on $L^2$ $\star\star$

(a) For $1\le p<\infty$, show $L^p(P)$ is a vector space and $|\cdot|_p$ a seminorm
(b) On $L^2(P)$, show $\langle S,T\rangle:=\int ST,dP$ is a semi-inner product and $|T|_2^2 = \langle T,T\rangle$.

Exercise 3.12: Cauchy–Schwarz inequality $\star\star\star$

Prove Cauchy–Schwarz in an abstract semi-inner-product space using the quadratic polynomial argument.

Exercise 3.13: Finite probability spaces and $\ell^1$ $\star\star$

On a finite probability space, identify $L^1(P)$ with $\mathbb{R}^{|\Omega|}$ via a norm-preserving linear isomorphism.

Exercise 3.14: Densities and change of measure $\star\star\star$

(a) If $T_0\ge0$ with $\int T_0,dP=1$, define $Q(A)=\int T_0 1_A,dP$ and show $Q$ is a probability measure absolutely continuous w.r.t. $P$
(b) Show for $T\ge0$: $\int T,dQ = \int TT_0,dP$.

Exercise 3.15: Product of integrable/quasi-integrable functions $\star\star$

(a) Show measurability of $T_1T_2$ for extended-real measurable $T_1,T_2$
(b) Example: integrable $T_1,T_2$ with non-integrable product
(c) Example: quasi-integrable $T_1,T_2$ with product not quasi-integrable.

Exercise 3.16: Scaling integrable functions $\star\star$

For measurable $T$ and scalar $\alpha$:
(a) Show measurability of $\alpha T$
(b) If $T$ is integrable, so is $\alpha T$, and $\int\alpha T,dP = \alpha\int T,dP$
(c) Analogous statement for quasi-integrability.

Exercise 3.17: Linearity of the integral (extended-real case) $\star\star$

For measurable $T_1,T_2$ with $T_1+T_2$ well-defined:
(a) Show measurability of $T_1+T_2$
(b) If both integrable, then $\int(T_1+T_2),dP = \int T_1,dP + \int T_2,dP$
(c) Extend to the case “one integrable, one quasi-integrable”.

Exercise 3.18: Dominated monotone convergence $\star\star\star$

If $T_n\uparrow T$ with $T_n\ge S$ and $\int S^-,dP<\infty$, prove $\int T_n,dP\to\int T,dP$; similarly for $T_n\downarrow T$ dominated by $S^+$.

Exercise 3.19: A mixed measure on $(0,1]$ $\star\star$

On $(0,1]$ with $\lambda$:
(a) Show $P := \frac12\lambda + \frac14\delta_a + \frac14\delta_b$ is a probability measure
(b) For $T\equiv1$, compute $\int_{[a,b]} T,dP$ and $\int_{(a,b)} T,dP$, illustrating the subtlety of $\int_a^b$ notation.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment