Last active
October 6, 2019 22:54
-
-
Save Nikolaj-K/1d8fc53a79736b275d798b17aa454ad5 to your computer and use it in GitHub Desktop.
Interesting limits resulting in exp
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
% The document discussed in this video: | |
% | |
% https://youtu.be/avc3Iv7Yojs | |
\subsection{Binomial theorem} | |
$\left(x+y\right)^n =\sum_{k=0}^n \{\frac{n!}{k!\,(n-k)!}\}\, x^k y^{n-k} = x^n + x\,y\,\sum_{k=1}^{n-1}\{ \frac{n!}{k!\,(n-k)!} \}x^{k-1} y^{n-(k+1)} + y^n$ | |
e.g. | |
$(x + y)^2 = x^2 + \{2\}xy + y^2$ | |
$(x+y)^3 = x^3 + \{3\}x^2y +\{ 3\}xy^2 + y^3$ | |
$(x+y)^4 = x^4 + \{4\}x^3y + \{6\}x^2y^2 + \{4\}xy^3 + y^4$ | |
$...$ | |
and so | |
$\left(1+y\right)^n = \sum_{k=0}^n\{ \frac{n!}{(n-k)!}\} \{\frac {1} {k!} \}y^k$ | |
\subsection{Exponential series} | |
${\rm exp}(x)^y = {\rm exp}(x\cdot y)$ | |
where | |
${\rm exp}(x) := \lim_{N\to\infty}\sum_{k=0}^N\{ \frac{1}{k!}\}x^k = 1 + x + x^2\left( \{\frac{1}{2!}\}+\{\frac{1}{3!}\}x+\{\frac{1}{4!}\}x^2+ \dots \right)$ | |
${\rm exp}(x) = ({\rm e}^{\frac{x}{n}})^n = \left(1+\frac{x}{n} + \left(\frac{x}{n} \right)^2\lim_{N\to\infty}\sum_{k=0}^N\{ \frac{1}{(k+2)!}\}\left(\frac{x}{n} \right)^{k}\right)^n = \left(1+\frac{x}{n} \right)^n +\,O(\left(\frac{x}{n} \right)^2)$ | |
Coefficient comparison: | |
$\left(1 + \frac {x} {n} \right)^n = \sum_{k=0}^n\{ \frac {n!} {(n-k)!\,n^k} \} \{\frac {1} {k!} \} x^k = \sum_{k=0}^n\{\prod_{j=1}^{k}(1-\frac{k-j}{n})\} \{\frac {1} {k!} \} x^k$ | |
Also | |
${\rm exp}(x) = \lim_{N\to\infty}\left(1+\frac{x}{N}+\,O((\frac{1}{N})^2)\right)^N$, \ \ \ \ e.g. $ {\rm exp}(x) = \lim_{N\to\infty} \left(\frac{N}{N-x}\right)^N$ |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment