Skip to content

Instantly share code, notes, and snippets.

@Nikolaj-K
Last active October 6, 2019 22:54
Show Gist options
  • Save Nikolaj-K/1d8fc53a79736b275d798b17aa454ad5 to your computer and use it in GitHub Desktop.
Save Nikolaj-K/1d8fc53a79736b275d798b17aa454ad5 to your computer and use it in GitHub Desktop.
Interesting limits resulting in exp
% The document discussed in this video:
%
% https://youtu.be/avc3Iv7Yojs
\subsection{Binomial theorem}
$\left(x+y\right)^n =\sum_{k=0}^n \{\frac{n!}{k!\,(n-k)!}\}\, x^k y^{n-k} = x^n + x\,y\,\sum_{k=1}^{n-1}\{ \frac{n!}{k!\,(n-k)!} \}x^{k-1} y^{n-(k+1)} + y^n$
e.g.
$(x + y)^2 = x^2 + \{2\}xy + y^2$
$(x+y)^3 = x^3 + \{3\}x^2y +\{ 3\}xy^2 + y^3$
$(x+y)^4 = x^4 + \{4\}x^3y + \{6\}x^2y^2 + \{4\}xy^3 + y^4$
$...$
and so
$\left(1+y\right)^n = \sum_{k=0}^n\{ \frac{n!}{(n-k)!}\} \{\frac {1} {k!} \}y^k$
\subsection{Exponential series}
${\rm exp}(x)^y = {\rm exp}(x\cdot y)$
where
${\rm exp}(x) := \lim_{N\to\infty}\sum_{k=0}^N\{ \frac{1}{k!}\}x^k = 1 + x + x^2\left( \{\frac{1}{2!}\}+\{\frac{1}{3!}\}x+\{\frac{1}{4!}\}x^2+ \dots \right)$
${\rm exp}(x) = ({\rm e}^{\frac{x}{n}})^n = \left(1+\frac{x}{n} + \left(\frac{x}{n} \right)^2\lim_{N\to\infty}\sum_{k=0}^N\{ \frac{1}{(k+2)!}\}\left(\frac{x}{n} \right)^{k}\right)^n = \left(1+\frac{x}{n} \right)^n +\,O(\left(\frac{x}{n} \right)^2)$
Coefficient comparison:
$\left(1 + \frac {x} {n} \right)^n = \sum_{k=0}^n\{ \frac {n!} {(n-k)!\,n^k} \} \{\frac {1} {k!} \} x^k = \sum_{k=0}^n\{\prod_{j=1}^{k}(1-\frac{k-j}{n})\} \{\frac {1} {k!} \} x^k$
Also
${\rm exp}(x) = \lim_{N\to\infty}\left(1+\frac{x}{N}+\,O((\frac{1}{N})^2)\right)^N$, \ \ \ \ e.g. $ {\rm exp}(x) = \lim_{N\to\infty} \left(\frac{N}{N-x}\right)^N$
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment