Last active
September 26, 2020 20:05
-
-
Save Nikolaj-K/37355e99e23ddd1a8daf5e4eaaa7a335 to your computer and use it in GitHub Desktop.
Notes on the video about Lie algebra axioms
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Those are the notes and TeX file for the video: | |
https://youtu.be/cCbn5x0z7pA | |
# References | |
https://en.wikipedia.org/wiki/Lie_algebra#Definition_of_a_Lie_algebra | |
https://en.wikipedia.org/wiki/Jacobi_identity | |
https://en.wikipedia.org/wiki/Quasi-Lie_algebra | |
# TeX | |
${\mathbb V}$ ... ${\mathbb F}$-vector spaces | |
\section{Axioms} | |
$b: {\mathbb V}\times {\mathbb V}\to {\mathbb V}$, bilinear | |
$\bullet\ b(x, x) = 0$ | |
$\bullet\ b(x, b(y, z)) + b(y, b(z, x)) + b(z, b(x, y)) = 0$ | |
\subsection{Example} | |
$b(x,y) = x\cdot y - y\cdot x$ \hspace{1cm} where ${\mathbb V}$ are square matrices of fixed dimension. | |
$b(x, b(y, z)) = x\cdot y\cdot z - x\cdot z\cdot y - y\cdot z\cdot x + z\cdot y\cdot x$ | |
\subsection{Immediate implications} | |
$b(y, x) = b(y, x) + b(x, x) + b(y, y) = b(x+y, x+y) - b(x, y) = - b(x,y)$ | |
Note: | |
$b(y,x) = - b(x,y) \implies 2\cdot b(x,x) = 0$ | |
$(2\neq 0)\land (b(y,x) = - b(x,y)) \implies b(x,x) = 0$ | |
\subsubsection{Rewrite of the 2nd axiom using anti-symmetry} | |
Curry: ${\mathrm {ad}}_x:=y\mapsto b(x,y)$ | |
Notation $D_x={\mathrm {ad}}_x$ | |
Notation $x*y := b(x, y)$ | |
Notation $[x,y] := b(x, y)$ | |
$\bullet\ b(x, b(y, z)) + b(y, b(z, x)) + b(z, b(x, y)) = 0$ | |
$\bullet\ [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0$ | |
$\bullet\ b(x, b(y, z)) = b(b(x, y), z) + b(y, b(x, z))$ | |
$\bullet\ {\mathrm {ad}}_x(y * z) = {\mathrm {ad}}_x(y) * z + y * {\mathrm {ad}}_x(z)$ | |
$\bullet\ D_x(y * z) = D_x y* z + y * D_x z$ |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment