Created
December 18, 2020 21:55
-
-
Save Nikolaj-K/3961f2e9f7386e827ecedebba3909e89 to your computer and use it in GitHub Desktop.
SU(2) theorist computes Kinetic Energy with this one weird trick
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Text for the video dicussed in | |
https://youtu.be/_q3ZIXLu1yw | |
===== Kinetic energy via SU(2) ===== | |
==== Theorems ==== | |
For $2\times 2$ matrices, | |
$\bullet$ $\det\big(A + B\big) = \det(A) + \det(B) + {\mathrm{tr}}\big({\mathrm{adj}}(A)\cdot B\big)$ | |
$\bullet$ $\det\big(A + B + C\big) = \det(A + B) + \det(C) + {\mathrm{tr}}\big({\mathrm{adj}}(A)\cdot B\big)$ | |
where $\det(A + B)$ can be expanded further. | |
$\bullet$ $\det\big(\sum_{i=1}^n A_i+B\big) = \det\big(\sum_{i=1}^n A_i\big) + \det(B) + {\mathrm{tr}}\big(\sum_{i=1}^n {\mathrm{adj}}(A_i)\cdot B\big)$ | |
<code> | |
a = {{a11, a12}, {a21, a22}}; b = {{b11, b12}, {b21, b22}}; c = {{c11, c12}, {c21, c22}}; | |
adj[m_] := Det[m] Inverse[m] | |
Det[a + b] == Det[a] + Det[b] + Tr[adj[a] . b] | |
Det[a + b + c] == Det[a + b] + Det[c] + Tr[(adj[a] + adj[b]) . c] | |
</code> | |
See | |
https://math.stackexchange.com/questions/673934/expressing-the-determinant-of-a-sum-of-two-matrices | |
and highly related | |
https://en.wikipedia.org/wiki/Jacobi%27s_formula | |
==== Recap: Special matrices ==== | |
$e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, etc | |
Generic point in ${\mathbb R}^3$: | |
$P(x,y,z) = \begin{pmatrix} x \\ y \\ z \end{pmatrix}=x\, e_1 + y\, e_2 + z\, e_3$ | |
$\bullet$ $H(P):= \begin{pmatrix} z & x+iy \\ x-iy & -z \end{pmatrix}$ | |
Linear map bijecting into the generic traceless hermitian $2\times 2$-matrix. | |
Also has | |
$\det(H(P)) = -(x^2 + y^2 + z^2) = -||P||^2$ | |
$\bullet$ $\sigma_1 := H(e_1) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ | |
$\bullet$ $\sigma_y := H(e_2) = i \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ | |
$\bullet$ $\sigma_2 = -\sigma_y = -i \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ | |
$\bullet$ $\sigma_3 := H(e_3) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ | |
$\bullet$ $ g_1 = i \sigma_1 = i \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ | |
$\bullet$ $ g_2 := i \sigma_y = -\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \sigma_1 \cdot \sigma_3$ | |
$\bullet$ $ g_3 = i \sigma_3 = i \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ | |
Their determiants is $\pm 1$ and their ${\mathrm{adj}}$ is a multiple of themselves and their traces are $0$. | |
Also note: | |
$H(e_3) = -i g_3$ | |
Commutation relations $\big[g_i, g_j\big] = 2 g_k$, cyclic. | |
$\bullet$ $U_\psi := \exp\left(g_1\frac{1}{2}\psi\right) = \exp\left(i\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\frac{1}{2}\psi\right) = \cos(\tfrac{1}{2}\psi) g_0 + \sin(\tfrac{1}{2}\psi)g_1$ | |
$\bullet$ $U_\theta := \exp\left(g_2\frac{1}{2}\theta\right) = \exp\left(\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}\frac{1}{2}\theta\right) = \cos(\tfrac{1}{2}\theta) g_0 + \sin(\tfrac{1}{2}\theta)g_2$ | |
$\bullet$ $U_\varphi := \exp\left(g_3\frac{1}{2}\varphi\right) = \exp\left(i\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\frac{1}{2}\varphi\right) = \cos(\tfrac{1}{2}\varphi) g_0 + \sin(\tfrac{1}{2}\varphi)g_3$ | |
==== Recap: Spherical coordinates ==== | |
$P = P(r(t), \theta(t), \varphi(t)) = r \cdot S(\theta(t), \varphi(t))$ | |
with | |
$S = \begin{pmatrix} \cos(\varphi)\sin(\theta) \\ \sin(\varphi)\sin(\theta) \\ \cos(\theta) \end{pmatrix}$ | |
$H(S) = \begin{pmatrix} \cos(\theta) & {\mathrm e}^{i\varphi}\sin(\theta) \\ {\mathrm e}^{-i\varphi}\sin(\theta) & -\cos(\theta) \end{pmatrix}$ | |
<img src="https://upload.wikimedia.org/wikipedia/commons/4/4f/3D_Spherical.svg" width="300"> | |
$Ad\{U_\varphi\cdot U_\theta\} H(e_3) =$ ... manipulating a sum of products of $g$'s ... $= H(S)$ | |
==== Adjoint action and its derivatives ==== | |
Recap: | |
(of an inversable operator $G$ on an operator $m$, whenever multiplication is defined) | |
$Ad\{G\}m := G\cdot m\cdot G^{-1}$ | |
(Note: Other map with $G^{-1}$ on the left hand side is just as nice.) | |
This map has | |
$\det(Ad\{G\}m) = \det(m)$ | |
From matrix calculus | |
https://en.wikipedia.org/wiki/Matrix_calculus | |
$(Ad\{G\}m)' = (G\cdot m\cdot G^{-1})' = G' \cdot m\cdot G^{-1} + G\cdot m'\cdot G^{-1} + G \cdot m \cdot (G^{-1})'$ | |
Let's restrict ourselves to the cases | |
$G = \exp(A\cdot f)$, | |
with only $f$ varing, then | |
$G'=G\cdot A\cdot f'$, | |
https://en.wikipedia.org/wiki/Derivative_of_the_exponential_map | |
Let moreover $m$ be constant. | |
Then | |
$(Ad\{G\}m)' = A\cdot Ad\{G\}m\cdot f' + Ad\{G\}m\cdot(-A\cdot f') = \Big[A, Ad\{G\}m\Big]\cdot f'$ | |
Similarly, | |
$(Ad\{G_1\cdot G_2\}m)' = \Big[A_1, Ad\{G_1\cdot G_2\}m\Big]\cdot f_1' + Ad\{G_1\cdot G_2\}\Big[A_2, m\Big]\cdot f_2'$ | |
==== Velocity ==== | |
$H(S') = H(S)' = \Big[g_3, H(S)\Big]\cdot \frac{1}{2} \varphi' + Ad\{U_\varphi\cdot U_\theta\}\Big[g_2, H(e_3)\Big]\cdot \frac{1}{2} \theta'$ | |
Note: | |
The factors $\frac{1}{2}$ will be gone once the commutation relations are applied. | |
The determinants of of the individual terms in the above must all be sums of products of the matrix elements of $H(S)$ (times $(\varphi')^2$ resp. $(\theta')^2$ at the end). | |
The determinant of $H(S)$ and $Ad\{U_\varphi\cdot U_\theta\}\Big[g_2, H(e_3)\Big]\frac{1}{2}$ are just $-1$. | |
The kinetic energy $T = \frac{1}{2}M\cdot (P')^2$. Using the determinants-of-sums formula, | |
$-||P'||^2 = \det(H(P')) = -(r')^2 + \det\left([g_3, H(S)] \frac{1}{2}\right)\cdot(r\cdot\varphi')^2 - (r\cdot \theta')^2 - {\mathrm{tr}}(\cdots)$. | |
In the trace-sum with the adjunct matrices, no unit matrix terms survive, so the trace is zero. | |
Finally, without much proof, $\bullet$ $\det([g_3, H(S)]) = -\sin(\theta)^2$. | |
$||P'||^2 = (r')^2 + r^2\left((\theta')^2 + (\sin(\theta)\cdot \varphi')^2\right)$. | |
==== References ==== | |
https://en.wikipedia.org/wiki/Jacobi%27s_formula | |
https://en.wikipedia.org/wiki/Derivative_of_the_exponential_map | |
https://en.wikipedia.org/wiki/Matrix_calculus | |
https://en.wikipedia.org/wiki/Lagrangian_mechanics#Polar_coordinates_in_2d_and_3d |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment