Last active
December 1, 2020 22:04
-
-
Save Nikolaj-K/552a92a3c811adb2ba9671ce88948159 to your computer and use it in GitHub Desktop.
Social distancing simulation animation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
https://youtu.be/rQwnOZFuYsU | |
In this video I use the animation tools in the matplotlib Python library | |
to help create a dynamic graph as seen in the Washington Post article | |
"Why outbreaks like coronavirus spread exponentially, and how to 'flatten the curve'". | |
Andrej Bauers code: | |
https://github.com/andrejbauer/social-distancing-simulator | |
Help translate it into more languages and tell Andrej I sent you. | |
Andrej Bauers page: | |
https://social-distancing-simulator.andrej.com/english.html | |
The Washington Post article: | |
https://www.washingtonpost.com/graphics/2020/world/corona-simulator/ | |
The MathOverflow thread: | |
https://stackoverflow.com/questions/9401658/how-to-animate-a-scatter-plot | |
The color schemes: | |
https://matplotlib.org/3.1.0/tutorials/colors/colormaps.html | |
""" | |
import time | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import matplotlib.animation as animation | |
_FPS = 90 # seconds | |
INTERVAL = 1000 / _FPS | |
NUM_POINTS = 20 # 5 | |
X_RANGE = 20 | |
Y_RANGE = 20 | |
def _r(): | |
arr = np.random.random(NUM_POINTS) # each in [0, 1] | |
return arr - 1/2 | |
def _raw_data_stream(): | |
F_dX = 1/20 | |
F_dY = 1/20 | |
F_dSIZE = 1/20 | |
F_dCOL = 1/5 | |
x = _r() * X_RANGE / 2 | |
y = _r() * Y_RANGE / 2 | |
size = _r() + 1/2 | |
col = _r() + 1/2 | |
idx = 0 | |
while True: | |
x += F_dX * _r() | |
y += F_dY * _r() | |
size += F_dSIZE * _r() | |
col += F_dCOL * _r() | |
data = np.c_[x, y, size, col] | |
#time.sleep(0.3); print("x\t\ty\t\ts\t\tc\n{}".format(data)) | |
yield idx, data | |
idx += 1 | |
class PlotStream: | |
def __init__(self): | |
# Set up figure and axes | |
self.__fig, self.__ax = plt.subplots() # plt hereby tied to this class context | |
self.__ax.axis([-X_RANGE / 2, X_RANGE / 2, -Y_RANGE / 2, Y_RANGE / 2]) | |
# Set up stream and first frame | |
self.__stream = _raw_data_stream() | |
self.__first_plot() | |
def run(self): | |
_animation = animation.FuncAnimation(self.__fig, self.__next_plot, interval=INTERVAL, blit=True) | |
# blit related to event loop on Mac? | |
plt.show() | |
def __first_plot(self): | |
COLOR_MAP = "jet" # "Set1" # See https://matplotlib.org/3.1.0/tutorials/colors/colormaps.html | |
idx, data = next(self.__stream) | |
assert idx==0, f"Index assert failed with idx={idx}." | |
x, y, size, color = data.T | |
self.__plot = self.__ax.scatter(x, y, s=size, c=color, vmin=0, vmax=1, cmap=COLOR_MAP, edgecolor="black") | |
self.__plot.set_sizes([500 for _ in range(NUM_POINTS)]) | |
return self.__plot, | |
def __next_plot(self, i): | |
idx, data = next(self.__stream) | |
assert i <= 1 or idx == i + 2, f"Index assert failed with idx={idx}, i={i}." # remove if this makes problems | |
self.__plot.set_offsets(data[:, :2]) # change coordinate | |
self.__plot.set_sizes(300 * abs(data[:, 2])**1.5 + 100) # change size | |
self.__plot.set_array(data[:, 3]) # change color | |
return self.__plot, | |
if __name__ == '__main__': | |
PlotStream().run() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment