Last active
April 13, 2024 11:24
-
-
Save Nikolaj-K/71fd1c35a16023f327a51c67da4592b7 to your computer and use it in GitHub Desktop.
Pierce's law, Consequentia Mirabilis, ¬¬-Elimination and LEM without Explosion
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Proofs discussed in the video: | |
https://youtu.be/h1Ikhh3J1vY | |
Legend and conventions: | |
$(P \to \bot) \lor P\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,$ ... $PEM$ ... Principle of excluded middle (a.k.a. $LEM$) | |
$((P \to \bot) \land P) \to Q\,\,\,$ ... $EXPL$ ... principle of explosion, a.k.a. ex falso | |
$((P \to Q) \to P) \to P$ ... $PP$ ... Pierce's principle | |
$((P \to \bot) \to P) \to P$ ... $CM$ ... consequentia mirabilis, a.k.a. Clavius's principle | |
$((P \to \bot)\to\bot)\to P$ ... $DNE$ ... Double-negation elimination | |
We write $\neg P$ for $P \to\bot$. | |
We use subscripts for mere instances of the principles, thus presenting more fine grained results. | |
E.g. mean that $DNE_{\neg P}$ denotes $(\neg\neg\neg P)\to\neg P$. | |
We write $\vdash$ for provability in minimal logic, i.e. none of the above hold. | |
--- | |
Summary: | |
$\bullet$ Related to Classical logic | |
$DNE_{PEM_P} \vdash PEM_P$ | |
$DNE_Q \vdash EXPL_Q$ | |
$DNE_P \vdash P \leftrightarrow (\neg \neg P)$ | |
$\bullet$ Related to Intuitionistic logic: | |
$EXPL \vdash CM \Leftrightarrow PP \Leftrightarrow PEM \Leftrightarrow DNE$ | |
$EXPL_P+PEM_P \vdash DNE_P$ | |
$EXPL_Q+PEM_P \vdash PP_{P,Q}$ | |
$EXPL_Q+PEM_P \vdash (Q \to P) \lor (P \to Q)$ | |
$\bullet$ Related to Minimal logic: | |
$\vdash EXPL_{\neg Q}$ | |
$\vdash DNE_{\neg P}$ | |
$\vdash ((\neg P) \to \neg \neg P) \to (\neg \neg P)$ | |
$\vdash PEM_P \leftrightarrow CM_P$ | |
(And many of the above entailments also shall follow as implications, | |
via the deduction theorem, but I don't do such metalogic here) | |
Also (not this video), e.g. | |
$\vdash (P\to\neg Q) \to (Q\to\neg P)$ | |
$\vdash (P\to\neg \neg Q) \to \neg \neg (P\to Q)$ | |
--- | |
But note: | |
$EXPL \nvdash (Q \to P) \lor (P \to Q)$ | |
$EXPL \nvdash \big(P\to(Q\lor R)\big)\to\big((P\to Q)\lor(P\to R)\big)$ | |
(Adopting either of this gives Gödel-Dummett logic.) | |
$EXPL \nvdash WPEM$ | |
$EXPL \nvdash$ 4th DeMorgan's law | |
(Adopting either of this gives Jankov's logic) | |
And there's many more $EXPL$-unprovable classical theorems that were sometimes considered as axioms. | |
Most are weak variants of things we have considered. | |
First order metalogic result: | |
$EXPL \nvdash \big(\forall x. \neg\neg A(x)\big)\to\neg\neg \big(\forall x. A(x)\big)$ | |
(That's e.g. in conflict with the constructive Church's thesis principle) | |
See also 'intermediate logic'. | |
--- | |
Warmup: | |
$EXPL_Q \vdash (P \to \bot) \to (P \to Q)$ (equivalent form) | |
Hence | |
$EXPL_Q \vdash PEM_P \leftrightarrow \big(P \lor (P \to Q)\big)$ | |
In words: "Anything is either true or implies everything." | |
$EXPL_Q + PEM_P \vdash (Q \to P) \lor (P \to Q)$ | |
$\vdash P \to ((R\to P)\to P)$ | |
$\vdash R \to ((R\to P)\to P)$ | |
$\vdash (P \lor R) \to ((R\to P)\to P)$ | |
So | |
$\vdash (P \lor (P \to Q)) \to PP_{P,Q}$ | |
So | |
$EXPL_Q+PEM_P \vdash PP_{P,Q}$ | |
$\vdash P \to ( (P\to Q)\to Q)$ | |
$\vdash (( (P\to Q)\to Q) \to R) \to (P \to R)$ | |
$\vdash (\neg \neg \neg P) \to \neg P$ | |
$\vdash (\neg \neg \neg P) \leftrightarrow \neg P$ | |
$\vdash DNE_{\neg P}$ | |
Also (by implication introduction and modus ponens) | |
$\vdash EXPL_{\neg Q}$ | |
$\vdash (P \lor \neg Q) \to (Q \to (P \lor\bot))$ | |
$EXPL_P \vdash (P \lor \neg Q) \to (Q \to P)$ (form of disjunctive syllogism) | |
$EXPL_P \vdash (P \lor \neg Q) \to (\neg \neg Q \to P)$ | |
$EXPL_P+PEM_P \vdash DNE_P$ | |
$\vdash (P \to (Q \to R)) \to ((P\to Q) \to (P\to R))$ (=Frege's theorem) | |
$\vdash (P \to \neg P) \to \neg P$ | |
$\vdash ((\neg P) \to \neg \neg P) \to (\neg \neg P)$ | |
(that's a weak $CM_P$) | |
$\vdash ((\neg P) \to P) \to (\neg \neg P)$ | |
$\vdash P \to (\neg \neg P)$ | |
$DNE_P \vdash P \leftrightarrow (\neg \neg P)$ | |
$\vdash (\neg (P \lor Q)) \to \neg P$ | |
$\vdash (\neg PEM_P) \to \neg P$ | |
$\vdash \neg PEM_P \to PEM_P$ | |
$\vdash \neg \neg PEM_P$ | |
$DNE_{PEM_P} \vdash PEM_P$ | |
So really | |
$EXPL \vdash PEM \Leftrightarrow DNE$ | |
$\vdash (P \land \neg P) \to \neg Q$ | |
$\vdash (P \land \neg P) \to \neg \neg Q$ | |
$DNE_Q \vdash EXPL_Q$ | |
$CM_{PEM_P} \vdash PEM_P$ | |
$PP_{P,\bot} \vdash CM_P$ | |
$PP_{PEM_P,\bot} \vdash PEM_P$ | |
So really | |
$EXPL \vdash PEM \Leftrightarrow PP$ | |
$\vdash ((Q\to P) \land (C\to P) \land (Q \lor C)) \to P$ | |
$\vdash ((\neg P)) \to P) \land (P \lor \neg P)) \to P$ | |
$PEM_P \vdash CM_P$ | |
So really | |
$\vdash PEM_P \leftrightarrow CM_P$ | |
$\vdash (P \to Q) \to ((P \land Q) \leftrightarrow P)$ | |
$\vdash (((P \to Q) \to (P \land Q)) \to P) \leftrightarrow (((P \to Q) \to P) \to P)$ | |
$\vdash ((\neg P \to (P \land\bot)) \to P) \leftrightarrow ((\neg P \to P) \to P)$ | |
$\vdash DNE_P \to CM_P$ | |
$EXPL \vdash DNE \Leftrightarrow CM$ |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment