Text used in this video:
https://youtu.be/7HKnOOvssvs
==== Recall the regularity statement ====
$\forall s.\Big(s\neq{},\to,\exists(x\in s). x\cap s={}\Big)$
==== Logical definitions and theorems ====
=== Definitions ===
$A(a)$ ... $a\in A$
$\forall(x\in A). B(x)$ ... $\forall x. A(x) \to B(x)$
$\exists(x\in A). B(x)$ ... $\exists x. A(x) \land B(x)$
$\forall(z < y).P(z)$ ... $\forall z.\big((z < y)\to P(z)\big)$
(used above)
$x\in {\mathbb U}$ ... $x=x$
${\mathrm{refl}}(x)$ ... $x=x$
${\mathbb U}$ ... ${x\mid x=x}$
$\top$ ... $\forall x. x=x$
$x\in {}$ ... $x\neq x$
${}$ ... ${x\mid x\neq x}$
$y\in(x\cap\Sigma)$ ... $y\in x\land y\in\Sigma$
A minimal $x$ for a relation $R$ is one for which there does not exist another $y$ with $R(y, x)$.
As relation, the membership relation restricted to a class $\Sigma$ will be considered,
i.e. a minimal element with respect to $\Sigma$ is one without a $y\in(x\cap \Sigma)$.
$\big(P\to(D\land\neg D)\big)\to\neg P$
(Consider $D=\neg E$)
$\big(P\to(\neg E\land\neg\neg E)\big)\to\neg P$
=== Identities and theorem ===
Identities:
$\forall z. z\in {\mathbb U}$
$\neg \exists z. z\in {}$
$\forall z. \neg(z\in {})$
Big guy for you:
$\forall(x\in X).\Big(A(x)\to\big(B(x)\to C\big)\Big),\leftrightarrow,\Big(\Big(\exists(x\in X).\big(A(x)\land B(x)\big)\Big)\to C\Big)$
The case $C=\bot$ is without content, so consider the Separation statement equivalence:
$\forall x.\big(A(x)\to \neg B(x)\big),\leftrightarrow,\neg \exists x.\big(A(x)\land B(x)\big)$
$\forall x.\neg B(x)\leftrightarrow\neg\exists x.B(x)$
If-clauses:
$\big(A\to\big(B\to C)\big),\leftrightarrow,\big((A\lor B)\to C\big)$
Currying:
$((A\to C)\land (A\to C)),\leftrightarrow,\big((A\land B)\to C\big)$
Furthermore:
$(A\to\neg B)\leftrightarrow\neg(A\land B)$
$(A\to \neg B)\to(B\to\neg A)$
$(B\lor\neg A)\to(A\to B)$
Contrapositive:
$(A\to B)\to(\neg B\to\neg A)$
(When discussing classical statements we're gonna use $\leftrightarrow$ for all of those,
as well as freely swapping propositional variables $B$ and $\neg B$ in a formula)
For fixed $c$,
$\big(\forall x.(x=c\to P(x,c))\big)\to P(c,c)$
=== Von Neumann model defintiions ===
$0_\omega$ ... ${}$
$n_\omega:={k\mid k < n}$
$S_\omega x$ ... $x\cup {x}$
(we're going to also just write $0$ and $S$, but don't confuseit with the zero in ${\mathsf{PA}}$)
Relatedly:
Transitive set $x$ ... $(z\in x)\to(z\subseteq x)$
The relation $<$ is modeled by just $\in$.
Ordinal set ... transitive sets of transitive sets.
$y\in x$ models the order relation $y < x$ for ordinals in general.
Order is classically trichotomous and total. Nice induction step formulation via $S_\omega$.
==== HA Recap ====
Induction:
$\forall n.\Big(Q(0)\land \forall n.\big(Q(n)\to Q(Sn)\big)\Big),\to,\forall m.Q(m)$
Complete Induction:
$\forall n. \Big(\big(\forall (k < n). Q(k))\big),\to,Q(n)\Big),\to,\forall m.Q(m)$
$R(k,n)$ ... $k < n$
$\forall n. \Big(\big(\forall k.(R(k,n)\to Q(k))\big),\to,Q(n)\Big),\to,\forall m.Q(m)$
Its contrapositive:
$\neg\forall m.Q(m),\to,\neg\forall n. \Big(\big(\forall k.(R(k,n)\to Q(k))\big),\to,Q(n)\Big)$
$Q$ ... $\neg T$
$\neg\forall m.\neg T(m),\to,\neg\forall n. \Big(\big(\forall k.R(k,n)\to\neg T(k)\big),\to,\neg T(n)\Big)$
Equivalent:
$\big(\neg\neg\exists m.T(m)\big),\to,\neg\neg\exists n.\Big(\big(\forall k.R(k,n)\to\neg T(k)\big),\land T(n)\Big)$
Weaker form $M$:
$\big(\exists m.T(m)\big),\to,\neg\neg\exists n.\Big(\big(\forall k.R(k,n)\to\neg T(k)\big),\land T(n)\Big)$
=== c < c ===
Fix a $c$
$T_c(k)$ ... $k=c$
$T_c(c)$ holds
$\Big(R(c,c)\land\exists n.\Big(\big(\forall k.(R(k,n)\to\neg T_c(k))\big),\land T_c(n)\Big)\Big)\to\bot$
$M\to\neg\exists c.R(c,c)$
=== c < c, again===
Directly from complete induction
$\forall n. \Big(\big(\forall k.(R(k,n)\to k\neq c)\big),\to,n\neq c\Big),\to,\forall m. m\neq c$
$\neg\neg R(c,c),\to,\neg\exists m. m= c$
==== A theorem for latter comparison ====
${\mathsf{PA}}\vdash$ Every $n$ is either zero or has a computable unique predecessor $p$ with $n = Sp$.
$Q_\mathrm{-1}(n)$ ... $n = 0,\lor,\exists p.\big(Sp = n\land Q(p)\big)$.
$(Q_\mathrm{-1}(0),\to, Q(0)),\leftrightarrow,Q(0)$.
$Q_\mathrm{-1}(Sn),\leftrightarrow, Q(n)$
(i.e. $Q_\mathrm{-1}(n)$ expresses $Q(n-1)$)
So
$\forall n. \big(Q_\mathrm{-1}(n) ,\to, Q(n)\big),\to,\forall m. Q(m)$
==== Classical equivalents ====
$\exists n. \big(\big(\forall k.(R(k,n)\to Q(k))\big),\land,\neg Q(n)\big),\lor,\forall m. Q(m)$
For any predicate $Q$, either there is some natural number $n$ for which $Q$ does not hold,
despite $Q$ holding for all predecessors, or $Q$ hold for all numbers.
Instead of $\forall(R(k,n)\to Q(k)$, one may also use $Q_\mathrm{-1}(n)$ and obtain a related statement.
It constrains the task of ruling out counter-examples for a property of natural numbers:
If the bottom case $Q(0)$ is validated and one can prove, for any number $n$,
that the property $Q$ is always passed on to $Sn$, then this already rules out a failure case.
(And via the least number principle: If a failure case exists, there there is a ''minimal'' such failure case.)
Compare with:
$\exists n.\neg Q(n),\lor,\forall m. Q(m)$
==== Set-induction ====
$\forall x. \Big(\big(\forall (y \in x). \psi(y)\big),\to,\psi(x)\Big),\to,\forall z. \psi(z)$
Also here $\forall(y\in 0).\psi(y)$, in a proof using this, $\psi({})$ must be established.
=== Rewrites ===
$\Psi$ ... ${x\mid \psi(x)}$
$\forall (x\subseteq \Psi). x\in \Psi,\leftrightarrow,\Psi={\mathbb U}$
(Note: Sleight abuse of notation, given we mix formal "$=$" and class notation.)
Note: A set is also a subset of itself.
Compare: $\Sigma$ is $\in$-transitive means
$\forall (x\in \Sigma). x\subseteq\Sigma$
==== Transfinite induction ====
Let $\psi(x)$ be
$(x\in\Sigma)\to P(x)$
for some class (and so predicate, i.e. for two predicates)
$\forall (x\in\Sigma). \Big(\big(\forall (y \in (x\cap\Sigma)). P(y)\big),\to,P(x)\Big),\to,\forall (z\in\Sigma).P(z)$
Note: For transitive classes
$\forall(x\in\Sigma).\big((x\cap\Sigma)=x\big)$
so with set induction induction holds in side those.
$\implies$ transfinite induction for ordinals
(Sidenote: Also proves that all sets have ordinal rank and the rank of an ordinal is itself)
==== Induction for well-founded relations ====
Roughly, just generalize $y\in x$ to $R_D(y, x)$ for a relation on a domain $D$.
Induction condition expression then reads $R_D(y, x)\land y\in D$.
(Proves no infinite descending $R_D$-sequences, similar to below for sets. So there $\forall y.\neg R_D(y, y)$.)
Classically, well-foundedness can be characterize as
$\bullet$ minimal element existence for every subset (strong claim)
$\bullet$ (with dependent choice) non-existence of infinite descending chains (relatively weak)
==== Negated predicates ====
Let $\psi(x)$ ... $\neg S(x)$
Let $\Sigma$ .. ${x\mid S(x)}$ by $\Sigma$
($P(x)$ above as $x\neq x$.)
So
$\forall(x\in\Sigma).x\cap \Sigma\neq{},\to,\Sigma={}$
So
$\neg\exists(x\in\Sigma). x\cap \Sigma={},\to,\Sigma={}$
I.e. a property such that there is no $\in$-minimal set for it is simply false for all sets.
==== Self-membership? ====
Consider $s$ with $\forall x. (x\in s\leftrightarrow x=s)$
Consider $S(x)$ ... $x=s$
Then
$s\in s$
$\forall (x\in s). s\in x$.
So
$s\cap x={}$ simplifies to $s\notin x$
Then the above plus our regularity expression implies $s={}$, a contradiction.
So, when set induction holds, $\neg\exists s.s={s}$.
So $\forall z.z\neq s$, i.e. $\Psi={\mathbb U}$.
In a theory with set induction, a $s$ with the described recursive property is not actually a set in the first place.
==== Infinite descending chains ====
Stronger assumption for the principle:
$A:=\forall\exists$-statement $\forall(x\in\Sigma). \exists (y\in\Sigma). y\in x$.
https://en.wikipedia.org/wiki/Axiom_of_dependent_choice
Assuming $\Sigma$ is an inhabited set together with dependent choice implies the existence of an infinite descending
membership chain.
Assume dependent Choice and $A$. Non-existence of a chain means $\Sigma$ couldn't have been inhabited, i.e. $\Sigma={}$.
==== Contrapositive ====
$\neg \forall z.P(z),\to,\neg\forall x.\Big(\big(\forall (y \in x). P(y)\big),\to, P(x)\Big)$
And
$\Sigma\neq {},\to,\neg\neg\exists(x\in\Sigma). x\cap \Sigma={}$
Of course, the principle still holds (weaker form) when assuming $\exists z.(z\in \Sigma)$ instead of $\Sigma\neq {}$.
And of course classically remove the "$\neg\neg$".
In terms of classes, this states that every non-empty class $\Sigma$ has a member $x$ that is disjoint from it.
If $\Sigma$ is a set, this is the instance of the axiom of regularity for $\Sigma$.
Previous video:
In a context with an axiom of separation, regularity also implies LEM.
Set induction schema does not. (And so e.g. part of CZF.)
CZF+Regularity+Full separation => ZF
==== Classical equivalents ====
$\exists x. \Big(\big(\forall(y\in x). P(y)\big),\land,\neg P(x)\Big),\lor,\forall z. P(z)$
Expresses that, for any predicate $P$, either there is some set $x$ for which $P$ does not hold while $P$ being true for all
elements of $x$,
or the predicate $P$ holds for all sets.
Relating it back to the original formulation:
If one can, for any set $x$, prove that $\forall(y\in x).P(y)$ implies $P(x)$,
which includes a proof of the bottom case $P({})$, then the failure case is ruled out and,
then, by the disjunctive syllogism the disjunct $\forall z. P(z)$ holds.
Compare with:
$\exists x.\neg P(x),\lor,\forall z. P(z)$
==== Set induction from regularity and transitive sets ====
Again, regularity
$\Sigma\neq {},\to,\exists(x\in\Sigma). x\cap \Sigma={}$
Given a class $\Sigma$ and any transitive set $t$, define $s=t\cap\Sigma$
Note:
$\bullet$ $x\in s\to (x\in\Sigma\land x\subseteq t)$
$\bullet$ $(x\subseteq t)\to (x\cap s = x\cap \Sigma)$
which we'll use to rewrite the regularity statement.
Proof regularity for classes (i.e. set induction) from regularity from sets:
Assume there exists $z\in\Sigma$ and $z$ is the subset of a transitive set.**
Construct $s_z$ as above. Note $(z\cap\Sigma)\subseteq s_z$.
Consider LEM for $s_z={}$:
$\bullet$ $s_z={}$: Then $x=z$ (the set) fulfills regularity.
(Note: If the transitive set is the transitive closure, this case is redundant.)
$\bullet$ $s_z\neq{}$: Then regularity (for the set $s_z$ not $\Sigma$) implies $\exists(x\in s_z)$
and we can use the above manipulation (Here we in fact learn $x\in s_z$ and not just $x\in\Sigma$)
QED.
**Note: Transitive set existence actually requires a lot of axioms (except powerset). The unpacking works with replacement on $\omega$.