Last active
October 6, 2019 22:55
-
-
Save Nikolaj-K/d422185c70a1f12d62f302ac532a88e8 to your computer and use it in GitHub Desktop.
The LaTeX file used in the -1/12 video.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
% This is the LaTeX file with all the formulas shown in the video on the | |
% infamous -1/12 value in analytic number theory and other fields: | |
% | |
% https://youtu.be/az2WOnxsLhc | |
\newpage | |
$\lim_{q \to 1} n\, q^n = n$ | |
\hspace{.5cm} | |
Proposition: | |
$\lim_{q \to 1} \left( \sum_{n=0}^\infty n\, q^n - \int_0^\infty n\, q^n\, {\mathrm d}n \right) = - \frac{1}{12} $ | |
%Bild | |
\begin{figure}[h] % [h] steht dafür, dass das bild an dieser Stelle platziert wird. Alternativ gibt es noch [t], [b], und [p] | |
\centering | |
\includegraphics[width=14cm]{./pictures/graph.png} | |
\caption{$\sum_{n=0}^\infty n \, q^n - \int_0^\infty n\, q^n\, {\rm d}n= - \frac{1}{12} + {\mathcal O}((q-1))$} | |
\end{figure} | |
We may make a guess about its value via Euler-Maclaurin. | |
\newpage | |
\section{Euler and Maclaurin} | |
How to infinite discrete sums compare to unbounded integrals? | |
Euler-Maclaurin formula: | |
\url{https://en.wikipedia.org/wiki/Euler%E2%80%93Maclaurin_formula} | |
\url{https://en.wikipedia.org/wiki/Bernoulli_number} | |
\hspace{.5cm} | |
$\sum _{n=m+1}^{N} f(n)=\int_m^{N} f(n)\, {\rm d}n+ {\mathcal R},$ | |
\hspace{.5cm} | |
${\mathcal R} = -\frac{1}{2}\left( f(m)-f(N) \right) -\frac{1}{12}\left( f'(m)-f'(N)\right) + \frac 1{720}\left( f'''(m)-f'''(N)\right) + \cdots$ | |
\hspace{1cm} | |
Examples: | |
$\bullet$ Use $m=2$ and $N=4$ with $f(n)=n^2$, where $\int f(n)\, {\rm d}n = \tfrac{1}{3}n^3 + C$ | |
$\implies 3^2+4^2 = \tfrac{1}{3}4^3-\tfrac{1}{3}2^3 - \frac{1}{2}(2^2-4^2) - \frac{1}{12}\,(2\cdot 2^1-2\cdot 4^1)$ | |
\hspace{1cm} | |
$\bullet$ Use $m=2$ and $N=7$ with $f(n)=n$, where $\int f(n)\, {\rm d}n = \tfrac{1}{2}n^2 + C$ | |
$\implies 3^1 + 4^1 + 5^1 + 6^1 + 7^1 = \tfrac{1}{2}7^2-\tfrac{1}{2}2^2 - \frac{1}{2}(2-7)$ | |
\hspace{1cm} | |
Sidenote: $\sum_{n=0}^N n = \frac{1}{2}(N^2+N)$ | |
\hspace{1cm} | |
Question to ask: \\ What aspects of the formula is preserved when the upper bound $N$ blows up and $f^{(k)}(N)$ becomes undefined? | |
Sidenote: Peano arithmetic is not a theory of infinite sums. | |
$\sum_{n=0}^\infty a_n = y$ | |
means | |
$ \forall (\varepsilon\in{\mathbb R}_{>0}).\,\exists (m\in{\mathbb N}).\,\forall (N\ge_{\mathbb N} m).\,| \sum_{n=0}^N a_n - y \, |<\varepsilon $ | |
\newpage | |
\section{Proof of the result of the expansion at $q=1$} | |
For $|q|<1$, | |
$\bullet \,(q-1)\cdot\sum_{n=0}^N q^n = (q-1) \cdot (q^N + q^{N-1}+ \cdots + q + 1)= q^{N+1}-1$ | |
$ \implies \sum_{n=0}^\infty q^n =- \frac{1}{1-q}= \frac{1}{1-q}$ | |
$\bullet \log(q)\cdot\int_0^N q^n \, {\rm d}n = \log(q)\cdot\int_0^N {\rm e}^{n \log(q)} \, {\rm d}n= {\rm e}^{N \log(q)}-1$ | |
$ \implies \int_0^\infty q^n \, {\rm d}n = -\frac{1}{\log(q)} = \frac{1}{\log(1/q)} $ | |
\hspace{1cm} | |
$\bullet \,y=\frac{1}{2}x - \frac{1}{3}x^2 \implies y+y^2 = \frac{1}{2}x + \left(-\frac{1}{3}+(\frac{1}{2})^2\right)x^2+{\mathcal O}(x^3) = \frac{1}{2}x - \frac{1}{12} x^2+{\mathcal O}(x^3)$ | |
$\bullet \,\log(1+x) = \int_1^{1+x}\frac{1}{s}\,{\rm d}s = \int_0^x\frac{1}{1-(-t)}\,{\rm d}t = \int_0^x\sum_{n=0}^\infty (-t)^n\,{\rm d}t = x\sum_{n=0}^\infty \frac{1}{n+1}(-x)^{n}$ | |
$\bullet \,\frac {1} { \log(1+x)} = \frac {1} {x} \frac {1} {1 - \left(\frac{1}{2}x - \frac{1}{3}x^2 + {\mathcal O}(x^3)\right) } = \frac {1} {x} + \frac{1}{2} - \frac{1}{12} x + {\mathcal O}(x^2)$ | |
\hspace{1cm} | |
$\bullet\, \sum_{n=0}^\infty q^n - \int_0^\infty q^n {\rm d}n = -\frac{1}{q-1}+\frac{1}{\log(q)} = \frac{1}{2} - \frac{1}{12} (q-1) + {\mathcal O}((q-1)^2)$ | |
$\bullet \,\sum_{n=0}^\infty n \, q^n - \int_0^\infty n\, q^n\, {\rm d}n = q\frac{{\rm d}}{{\rm dq}} \left(\sum_{n=0}^\infty q^n - \int_0^\infty q^n {\rm d}n\right) = - \frac{1}{12} + {\mathcal O}((q-1)^2)$ | |
\hspace{1cm} | |
qed. | |
\newpage | |
\section{Bernoulli and Euler} | |
How or why do the Bernoulli numbers ($\pm\tfrac{1}{2}, \pm\tfrac{1}{12}, \cdot$) tie to exponentiation? | |
$f(q)=\sum_{k=0}^\infty a_k q^k, \ \ \ \ f(0)=a_0$ | |
$g(q):=\frac{f(0)}{f(f(0)\,q)}, \ \ \ \ g(0)=1$ | |
\hspace{1cm} | |
$g(q)=\frac{a_0}{\sum_{k=0}^\infty a_k\left(a_0\,q\right)^k}=\frac{1}{1+\sum_{k=1}^\infty\frac{a_k}{a_0}\left(a_0\,q\right)^k}=$ | |
$=1-a_1\,q+\left(a_1\,a_1-a_0\,a_2\right)\,q^2-\left(a_1\,a_1\,a_1-2\,a_0\,a_1\,a_2+a_0\,a_0\,a_3\right)\,q^3+{\mathcal O}(q^3)$ | |
\hspace{1cm} | |
$f(q)=\sum_{k=0}^\infty \frac{1}{(k+1)!} q^k = \frac { {\mathrm{e}^q}-1 } { q }$ | |
$\dfrac{q}{{\mathrm{e}^q}-1} = 1 + \left(-\frac{1}{2}\right) q + \left(\frac{1}{12} \right) q^2+{\mathcal O}(q^3)$ | |
\hspace{1cm} | |
Sidenote: | |
$\dfrac{q}{{\mathrm{e}^q}-1}\,{\mathrm{e}}^{x\,q}=1+\sum_{k=1}^\infty \frac{1}{k!}B_k(x) \,q^k=1+\frac{1}{1!}\left(x-\frac{1}{2}\right) q+\frac{1}{2!}\left(x^2-x+\frac{1}{6} \right) q^2+{\mathcal O}(q^3)$ | |
Sidenote: | |
\url{https://en.wikipedia.org/wiki/1_%2B_1_%2B_1_%2B_1_%2B_%E2%8B%AF} | |
\url{https://en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF} | |
\section{Euler and Lagrange} | |
How does exponentiation tie to infinitesimal vs. finite movement? | |
$D_hf(x):=h\frac{{\rm d}}{{\rm d}x} f(x)$ | |
$f(x+h)=\sum_{k=0}^\infty\frac{1}{k!}f^{k}(x)\,h^k = \sum_{k=0}^\infty\frac{1}{k!}D_h^kf(x) $ | |
$\Delta_h f(x) = f(x+h)-f(x)=D_hf(x)+\sum_{k=2}^\infty\frac{1}{k!}D_h^kf(x)$ | |
\hspace{1cm} | |
Sidenote: $\Delta_h = \exp(D_h) - 1$ | |
$ \dfrac{\Delta_h f(x)}{D_hf(x)}=1+\frac{1}{D_hf(x)}\sum_{k=2}^\infty\frac{1}{k!}D_h^kf(x)$ | |
$\frac{D_hf(x)}{\Delta_h f(x)}=1-\frac{f''(x)}{2!}\left(\frac{h}{f'(x)}\right)+\left(\frac{f''(x)\,f''(x)}{2!\,2!}-\frac{f'(x)\,f'''(x)}{1!\,3!}\right)\left(\frac{h}{f'(x)}\right)^2+{\mathcal O}(h^3).$ | |
\section{Riemann and Bernoulli} | |
$\Gamma(s) := \int_0^\infty t^{s-1} {\mathrm e}^{-t}\,{\mathrm d}t = \int_0^\infty (n\,x)^{s-1} {\mathrm e}^{-(n\,x)}\,{\mathrm d}(n\,x)$ | |
$\zeta(s) = \sum_{n=1}^\infty n^{-s} = \dfrac{1}{\Gamma(s)} \int_0^\infty \dfrac{x ^ {s-1}}{{\rm e} ^ x - 1} \, \mathrm{d}x$ | |
$\zeta(2) = 1+\frac{1}{4} +\frac{1}{9} +\frac{1}{16} +\cdots = \int_0^\infty \dfrac{x}{{\rm e} ^ x - 1} \, \mathrm{d}x$ | |
``'Where have I seen this before?'' | |
$\zeta(2n) = (-1)^{n+1} \dfrac{(2\pi)^{2n}}{2(2n)!}\cdot B_{2n}$ | |
$\zeta(2) = \pi^2\cdot \frac{1}{6}$ | |
\hspace{1cm} | |
$\zeta(s) = 2\,\frac{1}{(2\pi)^{1-s}}\sin{\left(\pi\,s/2\right)}\,\Gamma(1-s)\,\zeta(1-s)$ | |
$\zeta(-1) = 2\,\frac{1}{4\pi^2}(-1)\,\zeta(2) = -\frac{1}{2}\cdot\frac{1}{6}$ | |
\section{Baker, Campell, Hausdorff, Dykin, etc.} | |
The adjoint algebra element representation makes for a derivation. | |
\url{https://en.wikipedia.org/wiki/Baker%E2%80%93Campbell%E2%80%93Hausdorff_formula} | |
\url{https://en.wikipedia.org/wiki/Matrix_exponential#The_Baker%E2%80%93Campbell%E2%80%93Hausdorff_formula} | |
\section{Todd} | |
\url{https://en.wikipedia.org/wiki/Todd_class} | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment