Last active
March 7, 2024 23:21
-
-
Save Nikolaj-K/db8ed1fa38adeb499def0483fe4b62ac to your computer and use it in GitHub Desktop.
Computing a series of good rational approximations to reals using interval shrinking and the mediant. This relates to the Farey sequence.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Code also discussed in the video | |
https://youtu.be/icrXmYHnU9E | |
Related: | |
https://en.wikipedia.org/wiki/Mediant_(mathematics) | |
""" | |
from fractions import Fraction | |
class Config: | |
INT_MAX = 10**4 | |
def mediant(a, b): | |
num = a.numerator + b.numerator | |
denom = a.denominator + b.denominator | |
return Fraction(num, denom) | |
class VirtualMachine: # This part really just abstracts a while-loop | |
def __init__(self, update_step, halting_condition): | |
self.update_step = update_step | |
self.halting_condition = halting_condition | |
def run(self, state): | |
while(not self.halting_condition(state)): | |
state = self.update_step(state) | |
return state | |
def update_step_approx(state): | |
x = state['x'] | |
l = state['l'] | |
r = state['r'] | |
approx = mediant(l, r) | |
print("{}, {}, {}".format(approx, float(approx), approx - x)) | |
key = 'l' if x > approx else 'r' | |
state[key] = approx | |
return state | |
def halting_condition_approx(state): | |
l = state['l'] | |
r = state['r'] | |
approx = mediant(l, r) | |
too_large = approx.numerator > Config.INT_MAX or \ | |
approx.denominator > Config.INT_MAX | |
return too_large | |
vm_approx = VirtualMachine(update_step_approx, halting_condition_approx) | |
def approx(x): | |
approx = int(x) | |
state = dict(x=x, l=approx-1, r=approx+1, o=int(x)) | |
state = vm_approx.run(state) | |
l = state['l'] | |
r = state['r'] | |
approx = mediant(l, r) | |
return approx | |
if __name__ == '__main__': | |
from numpy import pi, exp | |
print(f"pi is approx. {approx(pi)}") | |
print(f"e is approx. {approx(exp(1))}") | |
""" | |
Output of the script is, e.g., | |
3, 3.0, -0.14159265358979312 | |
7/2, 3.5, 0.3584073464102069 | |
10/3, 3.3333333333333335, 0.19174067974354037 | |
13/4, 3.25, 0.10840734641020688 | |
16/5, 3.2, 0.05840734641020706 | |
19/6, 3.1666666666666665, 0.025074013076873403 | |
22/7, 3.142857142857143, 0.0012644892673496777 | |
25/8, 3.125, -0.016592653589793116 | |
47/15, 3.1333333333333333, -0.008259320256459812 | |
69/22, 3.1363636363636362, -0.0052290172261568735 | |
91/29, 3.1379310344827585, -0.0036616191070346638 | |
113/36, 3.138888888888889, -0.0027037647009042765 | |
135/43, 3.13953488372093, -0.0020577698688630797 | |
157/50, 3.14, -0.0015926535897929917 | |
179/57, 3.1403508771929824, -0.0012417763968106676 | |
201/64, 3.140625, -0.000967653589793116 | |
223/71, 3.140845070422535, -0.0007475831672580924 | |
245/78, 3.141025641025641, -0.0005670125641521473 | |
267/85, 3.1411764705882352, -0.00041618300155787935 | |
289/92, 3.141304347826087, -0.0002883057637061981 | |
311/99, 3.1414141414141414, -0.00017851217565167943 | |
333/106, 3.141509433962264, -8.32196275291075e-05 | |
355/113, 3.1415929203539825, 2.667641894049666e-07 | |
688/219, 3.141552511415525, -4.0142174268176234e-05 | |
1043/332, 3.141566265060241, -2.6388529552168194e-05 | |
1398/445, 3.141573033707865, -1.9619881928001348e-05 | |
1753/558, 3.1415770609319, -1.5592657893304107e-05 | |
2108/671, 3.1415797317436662, -1.2921846126889847e-05 | |
2463/784, 3.141581632653061, -1.1020936732109021e-05 | |
2818/897, 3.141583054626533, -9.598963260248894e-06 | |
3173/1010, 3.1415841584158417, -8.495173951406088e-06 | |
3528/1123, 3.141585040071238, -7.613518555160681e-06 | |
3883/1236, 3.1415857605177995, -6.893071993641087e-06 | |
4238/1349, 3.1415863602668646, -6.293322928563327e-06 | |
4593/1462, 3.1415868673050618, -5.7862847313572274e-06 | |
4948/1575, 3.1415873015873017, -5.352002491409991e-06 | |
5303/1688, 3.1415876777251186, -4.975864674516828e-06 | |
5658/1801, 3.141588006662965, -4.64692682822232e-06 | |
6013/1914, 3.1415882967607107, -4.356829082396985e-06 | |
6368/2027, 3.14158855451406, -4.099075733066115e-06 | |
6723/2140, 3.141588785046729, -3.8685430641116625e-06 | |
7078/2253, 3.1415889924545053, -3.661135287824635e-06 | |
7433/2366, 3.1415891800507185, -3.473539074594356e-06 | |
7788/2479, 3.1415893505445744, -3.303045218672196e-06 | |
8143/2592, 3.1415895061728394, -3.147416953730442e-06 | |
8498/2705, 3.1415896487985213, -3.004791271798979e-06 | |
8853/2818, 3.1415897799858055, -2.873603987652018e-06 | |
9208/2931, 3.1415899010576593, -2.752532133776242e-06 | |
9563/3044, 3.1415900131406045, -2.640449188628935e-06 | |
9918/3157, 3.1415901171998732, -2.5363899198715956e-06 | |
pi is approx. 10273/3270 | |
2, 2.0, -0.7182818284590451 | |
5/2, 2.5, -0.2182818284590451 | |
8/3, 2.6666666666666665, -0.05161516179237857 | |
11/4, 2.75, 0.03171817154095491 | |
19/7, 2.7142857142857144, -0.003996114173330678 | |
30/11, 2.727272727272727, 0.00899089881368198 | |
49/18, 2.7222222222222223, 0.00394039376317723 | |
68/25, 2.72, 0.0017181715409551046 | |
87/32, 2.71875, 0.0004681715409549092 | |
106/39, 2.717948717948718, -0.0003331105103270282 | |
193/71, 2.7183098591549295, 2.8030695884417867e-05 | |
299/110, 2.7181818181818183, -0.00010001027722683631 | |
492/181, 2.718232044198895, -4.9784260149898785e-05 | |
685/252, 2.7182539682539684, -2.7860205076724043e-05 | |
878/323, 2.718266253869969, -1.557458907619491e-05 | |
1071/394, 2.718274111675127, -7.716783918088055e-06 | |
1264/465, 2.718279569892473, -2.2585665719887515e-06 | |
1457/536, 2.718283582089552, 1.7536305070287028e-06 | |
2721/1001, 2.7182817182817183, -1.1017732681750658e-07 | |
4178/1537, 2.718282368249837, 5.39790792064565e-07 | |
6899/2538, 2.7182821118991334, 2.834400882889554e-07 | |
9620/3539, 2.7182820005651314, 1.7210608627138413e-07 | |
e is approx. 12341/4540 | |
""" |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment