Last active
September 26, 2020 20:03
-
-
Save Nikolaj-K/eaaa80861d902a0bbdd7827036c48af5 to your computer and use it in GitHub Desktop.
Euler'ss formula, Rodrigues' rotation formula
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Video in which this page is discussed: | |
https://youtu.be/jckyLXSWgZM | |
===== Euler formlua ===== | |
$z,t\in{\mathbb C}$. Recall | |
$\cosh(z):=\sum_{k=0}^\infty\frac{z^{2k}}{(2k)!}$ | |
$\cos(z):=\sum_{k=0}^\infty\frac{z^{2k}}{(2k)!}(-1)^k$ | |
$\sinh(z):=\sum_{k=0}^\infty\frac{z^{2k+1}}{(2k+1)!}$ | |
$\sin(z):=\sum_{k=0}^\infty\frac{z^{2k+1}}{(2k+1)!}(-1)^k$ | |
$\exp(z):=\sum_{k=0}^\infty\frac{z^k}{k!}=\cosh(z)+\sinh(z)$ | |
With the above we now have: | |
$i^2=-1 \implies$ | |
$\sin(t)=-i\sinh(it)$ | |
$\cos(t)=\cosh(it)$ | |
$\exp(it)=\cos(t)+i\sin(t)$ | |
Note: | |
$i^0=1$ (as used in power series) | |
---- | |
Real $2\times 2$-matrix representation of $\mathbb C:$ | |
$a+ib\mapsto a\cdot E_2+b\cdot I_2$ | |
where | |
$I_2=\begin{bmatrix} | |
0 & -1 \\ | |
1 & 0 | |
\end{bmatrix}, E_2=\begin{bmatrix} | |
1 & 0 \\ | |
0 & 1 | |
\end{bmatrix}$ | |
as | |
$I_2^2=\begin{bmatrix} | |
0 & -1 \\ | |
1 & 0 | |
\end{bmatrix} * \begin{bmatrix} | |
0 & -1 \\ | |
1 & 0 | |
\end{bmatrix} = \begin{bmatrix} | |
-1 & 0 \\ | |
0 & -1 | |
\end{bmatrix}=-E_2=-I_2^0$ | |
$\implies \forall d.\ I_2^{d+2}=-I_2^{d}$ | |
Oscillates between anti-symmetric and symmetric ever step and between positive and negative | |
(w.r.t. to the previous one) every two steps. | |
Trivial 3-dimensional extension this case: | |
$I_3=\begin{bmatrix} | |
0 & -1 & 0 \\ | |
1 & 0 & 0 \\ | |
0 & 0 & 0 | |
\end{bmatrix}, F_3=\begin{bmatrix} | |
1 & 0 & 0 \\ | |
0 & 1 & 0 \\ | |
0 & 0 & 0 | |
\end{bmatrix}, I_3^2 = -F_3$ | |
$\implies \forall d>0.\ I_3^{d+2} = -I_3^d$ (Note: $d>0$!) | |
Difference: $F_3$ is not the identity, $I_3^2\neq -I_3^0$. | |
Generalizing this: | |
Define | |
$\vert \vert \bullet\vert \vert: {\mathbb R}^3\to{\mathbb R},\ \ \vert \vert X\vert \vert := (X_1^2+X_2^2+X_3^2)^{1/2}$ | |
$N_\bullet: {\mathbb R}^3\to{\mathbb R}^3,\ \ N_X:=X\,/\,\vert \vert X\vert \vert$ | |
$[\bullet\times]: {\mathbb R}^3\to{\mathbb R}^{3\times 3},\ \ [X\times]:=\begin{bmatrix} | |
0 & -X_3 & X_2 \\ | |
X_3 & 0 & -X_1 \\ | |
-X_2 & X_1 & 0 | |
\end{bmatrix}$ (anti-symmetric) | |
$\bullet\otimes\bullet: {\mathbb R}^3\times{\mathbb R}^3\to{\mathbb R}^{3\times 3},\ \ X\otimes X:=\begin{bmatrix} | |
X_1\cdot X_1 & X_1\cdot X_2 & X_1\cdot X_3 \\ | |
X_2\cdot X_1 & X_2\cdot X_2 & X_2\cdot X_3 \\ | |
X_3\cdot X_1 & X_3\cdot X_2 & X_3\cdot X_3 \\ | |
\end{bmatrix}$ (symmetric) | |
Related as | |
$[X\times]^2 = -(\vert \vert X\vert \vert^2\cdot E - X\otimes X)$ | |
(Reduces to $-F_3$ when $X=(0,0,1)$) | |
$[X\times]^3 = -\vert \vert X\vert \vert^2\cdot [X\times]$ | |
$\implies \forall d>0.\ [X\times]^{2+d} = -\vert \vert X\vert \vert^2\cdot [X\times]^d$ | |
In particular, for non-zero $X$: | |
$[N_X\times]^3 = i^2\cdot [N_X\times]^1$ | |
---- | |
Let's consider | |
$J^P J^{B} = j^P J^{B}$, with $j$ a non-zero field element, say. | |
This is realized, in particular, in the trivial case $J=j$. | |
But the above is what we have in mind. | |
Generally, here the lowest $J$-power that can't be broken down is $P-1+B$. | |
Will make use of the partitioning bijection $f(p, i) = i\,P + p$ | |
$f(0,0)= 0, f(1,0)=1, f(2,0)=2, \dots, f(P-1,0)=P-1$ | |
$f(0, 1)=P, f(1, 1)=P+1, \dots, f(P-1,1)=2P-1$ | |
$f(0,2)=2P,\dots$. | |
Thus | |
$\sum_{k=B}^\infty a_k J^k = \left(\sum_{p=0}^{P-1}\left(\sum_{i=0}^\infty a_{i\,P+p+B} \,j^{i\,P} \right)J^{p}\right)J^B $ | |
Consider | |
$P=2$, i.e. $J^2 J^B = j^2 J^B$ | |
$\sum_{k=B}^\infty a_k J^k = \sum_{i=0}^\infty \left(a_{2i+B}\, E + a_{2i+B+1}\, J\right)\,(j^{2})^iJ^B $ | |
Consider moreover | |
$B=1$, i.e. $J^2 J = j^2 J$ | |
$\sum_{k=0}^\infty a_k J^k = a_0\,E + \sum_{i=0}^\infty \left(a_{2i+1}\, E + a_{2i+2}\, J\right)\,(j^{2})^iJ $ | |
$a_k=\frac{z^k}{k!}$ | |
$\exp(z\,J) = E + \dfrac{\sinh(z\,j)}{j} J + \dfrac{\cosh(z\,j)-1}{j^2} J^2 $ | |
To approach Eulers formula more closely, after formally rescaling of $z$ by $i/j$, we may also express this as | |
$\exp(i\,z\,J/j) = \left(E-(J/j)^2\right) + \cos(z)\,(J/j)^2 + i\,\sin(z)\,J/j$ | |
Consider | |
$j^2=-1$, which when also taking $J^2 J = j^2 J$ is just $J^3=-J$, E.g., $j=i$. | |
Then | |
$\exp(z\,J) = (E + J^2) + \cos(z)\,(-J^2) + \sin(z)\,J$ | |
Consider | |
$J^2=-E$ | |
$\exp(z\,J) = \cos(z) E + \sin(z) J$ | |
---- | |
Call $x\equiv \vert\vert X\vert\vert$ and recall | |
$[N_X\times]^2 = -E + N_X\otimes N_X$ | |
$[N_X\times]^3 = -[N_X\times]$ | |
So | |
$\exp(x\,[N_X\times]) = N_X\otimes N_X + \cos(x) (E - N_X\otimes N_X) + \sin(x) [N_X\times]$ | |
Consider | |
$X\cdot R = 0$ and call a third vector $I \equiv X\times R$, then | |
$\exp(x[N_X\times])N_R = \cos(x) N_R + \sin(x)\, N_I$ |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment