Skip to content

Instantly share code, notes, and snippets.

@Nikolaj-K
Last active September 26, 2020 20:03
Show Gist options
  • Save Nikolaj-K/eaaa80861d902a0bbdd7827036c48af5 to your computer and use it in GitHub Desktop.
Save Nikolaj-K/eaaa80861d902a0bbdd7827036c48af5 to your computer and use it in GitHub Desktop.
Euler'ss formula, Rodrigues' rotation formula
Video in which this page is discussed:
https://youtu.be/jckyLXSWgZM
===== Euler formlua =====
$z,t\in{\mathbb C}$. Recall
$\cosh(z):=\sum_{k=0}^\infty\frac{z^{2k}}{(2k)!}$
$\cos(z):=\sum_{k=0}^\infty\frac{z^{2k}}{(2k)!}(-1)^k$
$\sinh(z):=\sum_{k=0}^\infty\frac{z^{2k+1}}{(2k+1)!}$
$\sin(z):=\sum_{k=0}^\infty\frac{z^{2k+1}}{(2k+1)!}(-1)^k$
$\exp(z):=\sum_{k=0}^\infty\frac{z^k}{k!}=\cosh(z)+\sinh(z)$
With the above we now have:
$i^2=-1 \implies$
$\sin(t)=-i\sinh(it)$
$\cos(t)=\cosh(it)$
$\exp(it)=\cos(t)+i\sin(t)$
Note:
$i^0=1$ (as used in power series)
----
Real $2\times 2$-matrix representation of $\mathbb C:$
$a+ib\mapsto a\cdot E_2+b\cdot I_2$
where
$I_2=\begin{bmatrix}
0 & -1 \\
1 & 0
\end{bmatrix}, E_2=\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}$
as
$I_2^2=\begin{bmatrix}
0 & -1 \\
1 & 0
\end{bmatrix} * \begin{bmatrix}
0 & -1 \\
1 & 0
\end{bmatrix} = \begin{bmatrix}
-1 & 0 \\
0 & -1
\end{bmatrix}=-E_2=-I_2^0$
$\implies \forall d.\ I_2^{d+2}=-I_2^{d}$
Oscillates between anti-symmetric and symmetric ever step and between positive and negative
(w.r.t. to the previous one) every two steps.
Trivial 3-dimensional extension this case:
$I_3=\begin{bmatrix}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}, F_3=\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix}, I_3^2 = -F_3$
$\implies \forall d>0.\ I_3^{d+2} = -I_3^d$ (Note: $d>0$!)
Difference: $F_3$ is not the identity, $I_3^2\neq -I_3^0$.
Generalizing this:
Define
$\vert \vert \bullet\vert \vert: {\mathbb R}^3\to{\mathbb R},\ \ \vert \vert X\vert \vert := (X_1^2+X_2^2+X_3^2)^{1/2}$
$N_\bullet: {\mathbb R}^3\to{\mathbb R}^3,\ \ N_X:=X\,/\,\vert \vert X\vert \vert$
$[\bullet\times]: {\mathbb R}^3\to{\mathbb R}^{3\times 3},\ \ [X\times]:=\begin{bmatrix}
0 & -X_3 & X_2 \\
X_3 & 0 & -X_1 \\
-X_2 & X_1 & 0
\end{bmatrix}$ (anti-symmetric)
$\bullet\otimes\bullet: {\mathbb R}^3\times{\mathbb R}^3\to{\mathbb R}^{3\times 3},\ \ X\otimes X:=\begin{bmatrix}
X_1\cdot X_1 & X_1\cdot X_2 & X_1\cdot X_3 \\
X_2\cdot X_1 & X_2\cdot X_2 & X_2\cdot X_3 \\
X_3\cdot X_1 & X_3\cdot X_2 & X_3\cdot X_3 \\
\end{bmatrix}$ (symmetric)
Related as
$[X\times]^2 = -(\vert \vert X\vert \vert^2\cdot E - X\otimes X)$
(Reduces to $-F_3$ when $X=(0,0,1)$)
$[X\times]^3 = -\vert \vert X\vert \vert^2\cdot [X\times]$
$\implies \forall d>0.\ [X\times]^{2+d} = -\vert \vert X\vert \vert^2\cdot [X\times]^d$
In particular, for non-zero $X$:
$[N_X\times]^3 = i^2\cdot [N_X\times]^1$
----
Let's consider
$J^P J^{B} = j^P J^{B}$, with $j$ a non-zero field element, say.
This is realized, in particular, in the trivial case $J=j$.
But the above is what we have in mind.
Generally, here the lowest $J$-power that can't be broken down is $P-1+B$.
Will make use of the partitioning bijection $f(p, i) = i\,P + p$
$f(0,0)= 0, f(1,0)=1, f(2,0)=2, \dots, f(P-1,0)=P-1$
$f(0, 1)=P, f(1, 1)=P+1, \dots, f(P-1,1)=2P-1$
$f(0,2)=2P,\dots$.
Thus
$\sum_{k=B}^\infty a_k J^k = \left(\sum_{p=0}^{P-1}\left(\sum_{i=0}^\infty a_{i\,P+p+B} \,j^{i\,P} \right)J^{p}\right)J^B $
Consider
$P=2$, i.e. $J^2 J^B = j^2 J^B$
$\sum_{k=B}^\infty a_k J^k = \sum_{i=0}^\infty \left(a_{2i+B}\, E + a_{2i+B+1}\, J\right)\,(j^{2})^iJ^B $
Consider moreover
$B=1$, i.e. $J^2 J = j^2 J$
$\sum_{k=0}^\infty a_k J^k = a_0\,E + \sum_{i=0}^\infty \left(a_{2i+1}\, E + a_{2i+2}\, J\right)\,(j^{2})^iJ $
$a_k=\frac{z^k}{k!}$
$\exp(z\,J) = E + \dfrac{\sinh(z\,j)}{j} J + \dfrac{\cosh(z\,j)-1}{j^2} J^2 $
To approach Eulers formula more closely, after formally rescaling of $z$ by $i/j$, we may also express this as
$\exp(i\,z\,J/j) = \left(E-(J/j)^2\right) + \cos(z)\,(J/j)^2 + i\,\sin(z)\,J/j$
Consider
$j^2=-1$, which when also taking $J^2 J = j^2 J$ is just $J^3=-J$, E.g., $j=i$.
Then
$\exp(z\,J) = (E + J^2) + \cos(z)\,(-J^2) + \sin(z)\,J$
Consider
$J^2=-E$
$\exp(z\,J) = \cos(z) E + \sin(z) J$
----
Call $x\equiv \vert\vert X\vert\vert$ and recall
$[N_X\times]^2 = -E + N_X\otimes N_X$
$[N_X\times]^3 = -[N_X\times]$
So
$\exp(x\,[N_X\times]) = N_X\otimes N_X + \cos(x) (E - N_X\otimes N_X) + \sin(x) [N_X\times]$
Consider
$X\cdot R = 0$ and call a third vector $I \equiv X\times R$, then
$\exp(x[N_X\times])N_R = \cos(x) N_R + \sin(x)\, N_I$
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment