Test used in the video
https://youtu.be/-lPrjPHElik
=====four freebies of constructive arithmetic=====
Ref:
https://www.amazon.com/Constructivism-Mathematics-Studies-Logic-Foundations/dp/0444702660
====Gödel-Gentzen-translation====
https://en.wikipedia.org/wiki/Double-negation_translation
For arithmetic: All classically provable formulas are provable
with $\neg\neg$ before every existential quantifier.
${\mathsf{PA}}\ \vdash\ \phi\iff {\mathsf{HA}}\ \vdash\ \phi^{\exists\to\neg\neg\exists}$
(Here this is particularly simple in arithmetic,
as e.g. $\neg P$ when $\big(P\to (0=S0)\big)$, etc.
Apart from arithmetic - which has no atomic formulas and disjunction isn't
necessarily decidable -, you'd also have to put $\neg\neg$ before those things.)
===Pedestrian propositional minimal logic examples===
$\bullet$ Theorem: $\Big(\big(P\lor (P\to Q)\big)\to Q\Big)\to Q$
Proof: Assume $\big(P\lor (P\to Q)\big)\to Q$. Now by in-left this is stronger
than $P\to Q$, but using that for in-right implies $Q$. QED.
$\bullet$ Lemma: $\neg \neg (P\lor\neg P)$
$\bullet$ Theorem: $P\to((P\to Q)\to Q)$
Proof: Assume $P$. Now consider $\land$-form of modus ponens $(P\land (P\to Q))\to Q$. QED.
$\bullet$ Lemma: $P\to\neg\neg P$
$\bullet$ Lemma: $\Big(\big((P\to Q)\to Q\big)\to R\Big) \to (P\to R)$
$\bullet$ Lemma's lemma: $(\neg \neg \neg P)\leftrightarrow \neg P$
$\bullet$ Bonus theorem: $\land$-form of modus ponens generalized non-contradiction $\neg(P\land \neg P)$
$\bullet$ Bonus alternative proof of double-negated PEM when taking de Morgan
for granted: Consider $\neg((\neg P)\land \neg (\neg P))$
====Harrop formulas====
https://en.wikipedia.org/wiki/Harrop_formula
Very broad generalization of the "Lemma's lemma" above:
Not only $Q$ but also $P\to Q$ "behaves" classically as long as the
conclusion $Q$ has no existential quantifier.
(Antecedent can be anything, also be universal quantification.)
====$\Pi_2^0$-conservativity====
https://en.wikipedia.org/wiki/Friedman_translation
$\varphi$ ... any quantifier-free predicate.
${\mathsf{PA}}\ \vdash\ \forall n.\exists m. \varphi(n, m)\iff {\mathsf{HA}}\ \vdash\ \forall n.\exists m. \varphi(n, m)$
I.e. the theories make the same computable statements about computable relations.
E.g. predicates having nothing to do with infinity are all classical:
${\mathsf{HA}}\ \vdash\ \forall n. \cdots \forall m.,\varphi(n, \dots, m)\lor\neg\varphi(n, \dots, m)$
====Markov Rule====
https://en.wikipedia.org/wiki/Markov%27s_principle
${\mathsf{HA}}\ \vdash\ \Big(\forall m. \phi(m)\lor\neg \phi(m)\Big)\land\Big(\neg\neg\exists m. \phi(m)\Big)\ \ \ \iff\ \ \ {\mathsf{HA}}\ \vdash\ \exists m. \phi(m)$
"Decidable formulas have simple behaved existence"
"Numbers that are not absent will eventually be found"
====So what's actually not provable?====
Any theory with numbers has polynomials $p$ (theory-specific) such that existence
of zero's is independent.
${\mathrm{Con}_{\Pi_1^0}} := \neg\exists n. p(n)=0$
Roughly, the (primitive recursive) $p$ on $n$ represents the job of checking that whether $n$ is an (encoded) proof of $0=1$.
This is of Goldbach-type (i.e. a pure $\forall$-sentence) via switching of commutators (valid in intuitionistic predicate logic)
${\mathsf {IQL}}\ \vdash\ \neg\exists(x\in A).(x\in B) \leftrightarrow \forall(x\in A).\neg(x\in B)$
${\mathsf{ZFC}}\ \nvdash\ {\mathrm{Con}_{\Pi_1^0}}$
${\mathsf{ZFC}}\ \nvdash\ \neg {\mathrm{Con}_{\Pi_1^0}}$
(For the latter we assume soundness of ZFC.)
Therefore (maybe see future video on Disjunction property of ${\mathsf{HA}}$, ${\mathsf{CZF}}$, etc.)
${\mathsf{HA}}\ \nvdash\ {\mathrm{Con}{\Pi_1^0}}\lor \neg {\mathrm{Con}{\Pi_1^0}}$
(Note: Each theory of course has its own ${\mathrm{Con}_{\Pi_1^0}}$. Formally one shouldn't reusing the exact notation for ${\mathsf{ZFC}}$, given we want to discuss ${\mathsf{HA}}$ here.)
This breaks logical schemas. E.g. $\mathrm{PEM}$, in fact $\mathrm{WPEM}$, in fact $\mathrm{WLPO}$.
====More generally speaking... (Halting problems)====
https://en.wikipedia.org/wiki/Halting_problem#Formalization
https://en.wikipedia.org/wiki/Kleene%27s_T_predicate
https://en.wikipedia.org/wiki/Computably_enumerable_set
$H={\langle e, x\rangle\in{\mathbb N}\times{\mathbb N} \mid \exists n. T_1(e, x, n)}$
Theorem (Turing): $H$ is only computably enumerable (c.e.)
${\mathbb N}\times{\mathbb N}\setminus H$ is not even c.e.
Define special non-halting claim:
$ \mathrm{H}_{\Sigma_1^0} := \exists n. T_1(e, e, n) $
$ \mathrm{L}{\Pi_1^0} := \neg \mathrm{H}{\Sigma_1^0} $
${\mathsf{HA}}\ \nvdash\ \forall e.\ {\mathrm{H}{\Sigma_1^0}}(e)\lor\neg{\mathrm{H}{\Sigma_1^0}}(e)$
${\mathsf{HA}}\ \nvdash\ \forall e.\ {\mathrm{L}{\Pi_1^0}}(e)\lor\neg{\mathrm{L}{\Pi_1^0}}(e)$
Both are classical tautologies, but Turing: There are no total recursive functions deciding these.
(Closely related to Gödel I, although that result wasn't with a parameter $e\in{\mathbb N}$.)
$\bullet$ ${\mathrm{PEM}}$ implies: For predicates " $ {\mathbb N} \to \text{Prop} $" and any $e\in{\mathbb N}$, the propositions are bivalent.
Assuming function choice in ${\mathbb N} \times {0,1} $:
All total relations mapping to a unique bit give rise to a (potentially "hyper-computing") function.
$\bullet$ Formal Church's thesis $ \mathrm{CT}_0 $ implies: All total relations contain a recursive function.
Contrapositive of ${\mathrm{CT}_0}$ implies: Provable absence of a recursive function means totality isn't provable at all.
$ \mathrm{PEM} $ and $ \mathrm{CT}_0 $ don't go together:
$ \mathsf{HA} $ is consistent with $ \mathrm{CT}_0 $.
and
$ \mathsf{HA} + \mathrm{CT}_0 \vdash \neg\forall e.\ \big(\neg\exists n. T_1(e, e, n)\big) \lor \neg\big(\neg\exists n. T_1(e, e, n) \big) $
(not just failing but rejected)