Last active
December 9, 2022 09:33
-
-
Save NoFishLikeIan/b9f7ce29d058d1f2fcae4b346912c6e1 to your computer and use it in GitHub Desktop.
A small routine to compute bifurcation diagrams
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
""" | |
Compute the trajectory of a function f: (R^n x R) -> R^n, where x_{t + 1} = f(x_t, beta). | |
""" | |
def trajectory(f, beta, x0: np.ndarray, T: int) -> np.ndarray: | |
n = x0.shape[0] | |
X = np.zeros((T + 1, n), dtype = np.float64) | |
X[0, :] = x0 | |
for t in range(1, T + 1): | |
X[t, :] = f(X[t - 1, :], beta) | |
return X | |
""" | |
Compute the orbits of a function f: (R^dim x R) -> R^dim, where x_{t + 1} = f(x_t, beta), for parameters beta in the parameters range. | |
""" | |
def orbits(f, parameter_range: np.ndarray, n = 1_000, tr = 100, dim = 2, idx = 1): | |
x0 = np.random.normal(loc = 0, scale = 0.25, size = (n, dim)) | |
orbit = [] | |
for beta in parameter_range: | |
beta_orbit = [] | |
for i in range(n): | |
last = trajectory(f, beta, x0[i, :], tr)[-1, idx] # Save the last point | |
beta_orbit.append(last) | |
orbit.append(beta_orbit) | |
return orbit | |
if __name__ == "__main__": | |
d, s = 3/4, 1 # Default parameters | |
c = 1 # | |
def phi(x: np.ndarray, beta): | |
n = x.shape[0] | |
x_prime = np.empty(n) | |
intercept = 2 * d / s | |
x_prime[0] = -x[0] * (1 - x[1]) / (intercept + 1 + x[1]) | |
profit_diff = s * np.square(x_prime[0] - x[0]) / 2 - c | |
x_prime[1] = np.tanh(profit_diff * beta / 2) | |
return x_prime | |
# Computing a trajectory | |
T = 80 | |
x0 = np.random.normal(size = 2) | |
tr = trajectory(phi, 8, x0, T) | |
fig, ax = plt.subplots() | |
ax.plot(range(T + 1), tr[:, 0]) | |
fig.savefig("trajectory.png") | |
# Computing and saving a bifurcation | |
print("Computing...") | |
parameters = np.arange(start = 0.5, stop = 10, step = 0.1) | |
beta_orbits = orbits(phi, parameters, n = 2_000, tr = T) | |
print("Plotting...") | |
fig, ax = plt.subplots() | |
for (x, y) in zip(parameters, beta_orbits): | |
ax.scatter([x] * len(y), y, c = "black", s = 1) | |
fig.savefig("bifurcation.png") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment