Skip to content

Instantly share code, notes, and snippets.

View NoRaincheck's full-sized avatar

NoRaincheck

  • Nowhere
View GitHub Profile
import numpy as np
def linear_part(x, w):
return x * w
def non_linear(x, p=0.001):
multi = (x > 0).astype(np.float64)
multi[multi == 0] = 0.001
return x * multi
pareto_principle <- function(x){
return (x ^ (log(0.2)/log(0.8)))
}
sprintf("%.2f of the effort comes from %.2f of the causes", 0.99, pareto_principle(0.99))
sprintf("%.2f of the effort comes from %.2f of the causes", 0.95, pareto_principle(0.95))
sprintf("%.2f of the effort comes from %.2f of the causes", 0.8, pareto_principle(0.8))
sprintf("%.2f of the effort comes from %.2f of the causes", 0.5, pareto_principle(0.5))
@NoRaincheck
NoRaincheck / Dockerfile
Last active December 10, 2017 11:58
Simple test of docker and extending it.
FROM jupyter/r-notebook
# docker build --rm -t jupyter/extended-notebook .
# docker run --rm -it -p 8888:8888 jupyter/extended-notebook
RUN conda install --quiet --yes -c r rstudio=1.1*
RUN conda install --quiet --yes -c anaconda pandas scipy gensim scikit-learn
# install nbrsessionproxy
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
@NoRaincheck
NoRaincheck / CATCH_Keras_RL.md
Created February 23, 2017 12:40 — forked from EderSantana/CATCH_Keras_RL.md
Keras plays catch - a single file Reinforcement Learning example
from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
from keras.models import Sequential
from keras.layers import Convolution2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
train_data_dir = 'data'
img_width, img_height = 150, 150
train_datagen = ImageDataGenerator(

Topic list:

  • Zen of Python
  • dir
  • list vs tuple vs dict
  • iterating over things (continue, enumerate)
  • list comprehension (in)
  • dict comprehension (get)
  • **kwargs, *args
  • itertools and reading the recipes (e.g. list(itertools.chain.from_iterable(a)))
mu <- 2.5
tau <- 0.5
xn <- rnorm(50, mu, 1/tau)
# test for convergence
library(purrr)
mu_i = 0
alpha = 0.01
# stolen from stackoverflow, based on how james and i share scripts:
import Tkinter, tkSimpleDialog
root = Tkinter.Tk() # dialog needs a root window, or will create an "ugly" one for you
root.withdraw() # hide the root window
password = tkSimpleDialog.askstring("Password", "Enter password:", show='*', parent=root)
root.destroy() # clean up after yourself!
library(tidyverse)
data(iris)
func <- list(mean=mean, sd=sd, max=max, min=min)
fields <- c("Sepal.Length", "Sepal.Width")
# usage for one field
invoke_map(func, x=unlist(select_(iris, "Sepal.Length"))) %>% data.frame