Code for Keras plays catch blog post
python qlearn.py- Generate figures
Code for Keras plays catch blog post
python qlearn.py| from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img | |
| from keras.models import Sequential | |
| from keras.layers import Convolution2D, MaxPooling2D | |
| from keras.layers import Activation, Dropout, Flatten, Dense | |
| train_data_dir = 'data' | |
| img_width, img_height = 150, 150 | |
| train_datagen = ImageDataGenerator( |
Topic list:
dircontinue, enumerate)in)get)**kwargs, *argsitertools and reading the recipes (e.g. list(itertools.chain.from_iterable(a)))| mu <- 2.5 | |
| tau <- 0.5 | |
| xn <- rnorm(50, mu, 1/tau) | |
| # test for convergence | |
| library(purrr) | |
| mu_i = 0 | |
| alpha = 0.01 |
| # stolen from stackoverflow, based on how james and i share scripts: | |
| import Tkinter, tkSimpleDialog | |
| root = Tkinter.Tk() # dialog needs a root window, or will create an "ugly" one for you | |
| root.withdraw() # hide the root window | |
| password = tkSimpleDialog.askstring("Password", "Enter password:", show='*', parent=root) | |
| root.destroy() # clean up after yourself! |
| library(tidyverse) | |
| data(iris) | |
| func <- list(mean=mean, sd=sd, max=max, min=min) | |
| fields <- c("Sepal.Length", "Sepal.Width") | |
| # usage for one field | |
| invoke_map(func, x=unlist(select_(iris, "Sepal.Length"))) %>% data.frame |
| # -*- coding: utf-8 -*- | |
| """ | |
| Created on Sun Oct 9 12:57:49 2016 | |
| @author: chapm | |
| """ | |
| import numpy as np | |
| b = np.sqrt(2) |
| #!/usr/bin/env bash | |
| # Copyright 2015 TappingStone, Inc. | |
| # | |
| # This script will install PredictionIO onto your computer! | |
| # | |
| # Documentation: http://docs.prediction.io | |
| # | |
| # License: http://www.apache.org/licenses/LICENSE-2.0 |
| curl -i -XGET 'http://localhost:9200/_count?pretty' -d ' | |
| { | |
| "query": { | |
| "match_all": {} | |
| } | |
| } | |
| ' | |
| # placing documents in {index:megacorp, type:employee, id:1} | |
| curl -i -XPUT 'http://localhost:9200/megacorp/employee/1' -d ' |
| sim <- function(nx, ny, tailorder=c(3,2), rdist=rnorm) { | |
| xsample <- rdist(nx) | |
| ysample <- rdist(ny) | |
| xsample <- rev(xsample[order(xsample)]) | |
| ysample <- rev(ysample[order(ysample)]) | |
| return(xsample[tailorder[1]] > ysample[tailorder[2]]) | |
| } |