Last active
January 30, 2018 07:53
-
-
Save NobukazuHanada/aefbdcf6bb49654ff0020f8fc429d9a5 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class Number {} | |
class Zero : Number {} | |
class Succ<N:Number> : Number {} | |
typealias One = Succ<Zero> | |
typealias Two = Succ<Succ<Zero>> | |
typealias Three = Succ<Succ<Succ<Zero>>> | |
class Eq<S: Number, T: Number> {} | |
class Add<S: Number, T:Number> : Number {} | |
// reflective : ( m = m } | |
func reflective<S>(s:S.Type = S.self) -> Eq<S,S> { return Eq<S,S>() } | |
// symmetric : { m = n => n = m } | |
func symmetric<S,T>(s:S.Type = S.self, t:T.Type = T.self) -> (Eq<S,T>) -> Eq<T,S> { return {(e1:Eq<S,T>) -> Eq<T,S> in Eq<T,S>() } } | |
// transitive : s = t => t = r => r = s | |
func transitive<S,T,R>(s:S.Type = S.self, t:T.Type = T.self,r:R.Type = R.self) -> (Eq<S,T>) -> (Eq<T,R>) -> Eq<R,S> { | |
return { (e1: Eq<S,T>) -> ((Eq<T,R>) -> Eq<R,S>) in | |
{ (e2: Eq<T,R>) -> Eq<R,S> in Eq<R,S>() } | |
} | |
} | |
// axiom1 : s = t => succ(s) = succ(t) | |
func axiom1<S,T>(s:S.Type = S.self, t:T.Type = T.self) -> (Eq<S,T>) -> Eq<Succ<S>,Succ<T>> { | |
return { (x:Eq<S,T>) -> Eq<Succ<S>, Succ<T>> in Eq<Succ<S>, Succ<T>>() } | |
} | |
// axiom2 : s + 0 = s | |
func axiom2<S>(s:S.Type = S.self) -> Eq<Add<S,Zero>,S> { return Eq<Add<S,Zero>,S>() } | |
// axiom3 : s + succ(t) = succ(s + t) | |
func axiom3<S,T>(s:S.Type = S.self, t:T.Type = T.self) -> Eq<Add<S,Succ<T>>, Succ<Add<S,T>>> { return Eq<Add<S,Succ<T>>, Succ<Add<S,T>>>() } | |
// proof1 : succ(zero) + succ(zero) = succ(zero + succ(zero)) | |
// use axiom3 | |
let proof1 : Eq<Add<Succ<Zero>,Succ<Zero>>, Succ<Add<Succ<Zero>,Zero>>> = axiom3() | |
// proof2 : succ(zero) + zero = succ(zero) | |
let proof2 : Eq<Add<Succ<Zero>, Zero>, Succ<Zero>> = axiom2() | |
// proof3 : succ( succ(zero) + zero ) = succ(succ(zero)) | |
let proof3 : Eq<Succ<Add<Succ<Zero>, Zero>>,Succ<Succ<Zero>>> = axiom1()(proof2) | |
// proof4 : succ(succ(zero)) = succ(zero) + succ(zero) | |
let proof4 : Eq<Succ<Succ<Zero>>,Add<Succ<Zero>, Succ<Zero>>> = transitive()(proof1)(proof3) | |
// proof5 : succ(zero) + succ(zero) = succ(succ(zero)) | |
let proof5 : Eq<Add<Succ<Zero>, Succ<Zero>>,Succ<Succ<Zero>>> = symmetric()(proof4) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment