Created
November 21, 2024 21:47
-
-
Save NotAProton/8d30e12a1b8419165be6a6b797864d59 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Statistics Quick Reference Guide | |
## Chi-squared Distribution | |
### Formula | |
$X^2(n) = \text{Gamma}(\frac{n}{2}, \frac{1}{2})$ | |
In a sample: $\frac{(n-1)S^2}{\sigma^2} \sim X^2(n-1)$ | |
### Parameters | |
| Parameter | Meaning | | |
|-----------|---------| | |
| n | Degrees of freedom | | |
| S² | Sample variance | | |
| σ² | Population variance | | |
## Student's t-Distribution | |
### Formula | |
In a sample: $\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$ | |
$P(T > t_{p,n}) = p$ | |
Due to symmetry: $t_{1-p,n} = -t_{p,n}$ | |
### Parameters | |
| Parameter | Meaning | | |
|-----------|---------| | |
| $\bar{X}$ | Sample mean | | |
| μ | Population mean | | |
| S | Sample standard deviation | | |
| n | Sample size | | |
| p | Probability value | | |
## Confidence Intervals | |
### Normal Distribution (n > 30) | |
#### Formula | |
$\text{Interval} = \bar{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$ | |
where $z_x = \frac{1}{\Phi(1-x)}$ | |
### Parameters | |
| Parameter | Meaning | | |
|-----------|---------| | |
| α | Significance level (e.g., 0.05 for 95% CI) | | |
| $z_{\alpha/2}$ | Critical value from standard normal distribution | | |
| σ | Population standard deviation | | |
### Unknown Variance | |
#### Formula | |
$\text{Interval} = \bar{X} \pm t_{\alpha/2,n-1}\frac{S}{\sqrt{n}}$ | |
### Parameters | |
| Parameter | Meaning | | |
|-----------|---------| | |
| $t_{\alpha/2,n-1}$ | Critical value from t-distribution | | |
| S | Sample standard deviation | | |
## Maximum Likelihood Estimation (MLE) | |
### Formulas | |
Likelihood function: | |
$L(\theta) = \prod f(x_i;\theta)$ | |
Log-likelihood function: | |
$\ell(\theta) = \log(L(\theta))$ | |
### Parameters | |
| Parameter | Meaning | | |
|-----------|---------| | |
| θ | Parameter to be estimated | | |
| $f(x_i;\theta)$ | Probability density/mass function | | |
| $x_i$ | Individual observations | | |
### Common Steps for MLE | |
1. Write the likelihood function | |
2. Take the natural log | |
3. Find the derivative with respect to θ | |
4. Set equal to zero and solve | |
5. Verify it's a maximum using second derivative |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment