Statistics Quick Reference Guide
$X^2(n) = \text{Gamma}(\frac{n}{2}, \frac{1}{2})$
In a sample:
$\frac{(n-1)S^2}{\sigma^2} \sim X^2(n-1)$
Parameter
Meaning
n
Degrees of freedom
S²
Sample variance
σ²
Population variance
In a sample: $\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$
$P(T > t_{p,n}) = p$
Due to symmetry: $t_{1-p,n} = -t_{p,n}$
Parameter
Meaning
$\bar{X}$
Sample mean
μ
Population mean
S
Sample standard deviation
n
Sample size
p
Probability value
Normal Distribution (n > 30)
$\text{Interval} = \bar{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$
where $z_{\alpha/2} = \Phi^{-1}(1-\alpha/2)$
Parameter
Meaning
α
Significance level (e.g., 0.05 for 95% CI)
$z_{\alpha/2}$
Critical value = $\Phi^{-1}(1-\alpha/2)$
σ
Population standard deviation
$\text{Interval} = \bar{X} \pm t_{\alpha/2,n-1}\frac{S}{\sqrt{n}}$
Parameter
Meaning
$t_{\alpha/2,n-1}$
Critical value from t-distribution
S
Sample standard deviation
Confidence Interval for Variance
$\frac{(n-1)S^2}{\chi^2_{1-\alpha/2}} < \sigma^2 < \frac{(n-1)S^2}{\chi^2_{\alpha/2}}$
Parameter
Meaning
$\chi^2_{\alpha/2}$
Chi-square critical value with n-1 degrees of freedom
S²
Sample variance
n
Sample size
Maximum Likelihood Estimation (MLE)
Likelihood function:
$L(\theta) = \prod f(x_i;\theta)$
Log-likelihood function:
$\ell(\theta) = \log(L(\theta))$
Parameter
Meaning
θ
Parameter to be estimated
$f(x_i;\theta)$
Probability density/mass function
$x_i$
Individual observations
Write the likelihood function
Take the natural log
Find the derivative with respect to θ
Set equal to zero and solve
Verify it's a maximum using second derivative