Last active
January 27, 2024 11:50
-
-
Save OhadRubin/52c6f912eb91b43893f9e866e011c6e2 to your computer and use it in GitHub Desktop.
sliding_window_eval.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from more_itertools import windowed, repeat_last | |
import numpy as np | |
from more_itertools import grouper | |
input_ids = np.arange(65) | |
# input_ids = np.arange(4097) | |
width = 16 | |
stride = 4 | |
# class DummyTokenizer: | |
# def __init__(self): | |
def sliding_window(tok_input_ids, width, stride, padding_value = -100, bos_token_id = -2): | |
if stride>0: | |
all_windows = windowed(tok_input_ids, n=width, step=stride,fillvalue=padding_value) | |
mask_iterable = [np.ones(width,dtype=bool), | |
np.r_[np.zeros(width-stride,dtype=bool), np.ones(stride,dtype=bool)] | |
] | |
else: | |
all_windows = windowed(tok_input_ids, n=width, step=width-1,fillvalue=padding_value) | |
mask_iterable = [np.ones(width,dtype=bool), | |
np.r_[np.zeros(1,dtype=bool), np.ones(width-1,dtype=bool)] | |
] | |
all_windows = map(lambda x:np.array(x,dtype=np.int32), all_windows) | |
for tokens, loss_mask in zip(all_windows,repeat_last(mask_iterable)): | |
attention_mask = tokens!=padding_value | |
tokens[~attention_mask] = padding_value | |
loss_mask[~attention_mask] = False | |
tokens = np.r_[bos_token_id, tokens] | |
attention_mask = np.r_[True, attention_mask[:-1]] | |
input_tokens = tokens[:-1] | |
targets = tokens[1:] | |
yield dict(input_tokens=input_tokens, | |
targets=targets, | |
attention_mask=attention_mask, | |
loss_mask=loss_mask) | |
for element in sliding_window(np.arange(19), width=8, stride=4): | |
input_tokens = element["input_tokens"] | |
targets = element["targets"] | |
attention_mask = element["attention_mask"] | |
loss_mask = element["loss_mask"] | |
print(targets[loss_mask]) | |
print(element) | |
for element in sliding_window(np.arange(19), width=8, stride=0): | |
input_tokens = element["input_tokens"] | |
targets = element["targets"] | |
attention_mask = element["attention_mask"] | |
loss_mask = element["loss_mask"] | |
print(targets[loss_mask]) | |
print(element) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment