Skip to content

Instantly share code, notes, and snippets.

@OlafenwaMoses
Created August 5, 2019 20:23
Show Gist options
  • Save OlafenwaMoses/bc1475b9a043d63285cb733d0093d3d0 to your computer and use it in GitHub Desktop.
Save OlafenwaMoses/bc1475b9a043d63285cb733d0093d3d0 to your computer and use it in GitHub Desktop.
using System;
using System.IO;
using System.Net.Http;
using System.Threading.Tasks;
using Newtonsoft.Json;
namespace appone
{
class Response {
public bool success {get;set;}
public Object[] predictions {get;set;}
}
class Object {
public string label {get;set;}
public float confidence {get;set;}
public int y_min {get;set;}
public int x_min {get;set;}
public int y_max {get;set;}
public int x_max {get;set;}
}
class App {
static HttpClient client = new HttpClient();
public static async Task detectFace(string image_path){
var request = new MultipartFormDataContent();
var image_data = File.OpenRead(image_path);
request.Add(new StreamContent(image_data),"image",Path.GetFileName(image_path));
var output = await client.PostAsync("http://localhost:80/v1/vision/detection",request);
var jsonString = await output.Content.ReadAsStringAsync();
Response response = JsonConvert.DeserializeObject<Response>(jsonString);
foreach (var user in response.predictions){
Console.WriteLine(user.label);
}
Console.WriteLine(jsonString);
}
static void Main(string[] args){
detectFace("test-image.jpg").Wait();
}
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment