This document has been modified from its original format, which was written by Ning Shang ([email protected]). It has been updated and reformatted into a Markdown document by Woody Gilk and republished.
When working with a remote git repository which is hosted on a third-party storage server, data confidentiality sometimes becomes a concern. This article walks you through the procedures of setting up git repositories for which your local working directories are as normal (un-encrypted) but the committed content is encrypted.
I use git and Dropbox as a reliable, highly available, cost saving and distributed version control solution, and have really found it convenient and effective. One thing that is not addressed in this solution is data privacy/confidentiality. As Dropbox is a third-party data storage service with Amazon S3 as its backend data store, a paranoid user like myself would always be concerned about the Dropbox hosted data being disclosed to others, accidentally or deliberately. After all, putting unconditional trust on a third-party provider never seems to be a perfect rescue.
User controlled end-to-end encryption solves the problem: before data is pushed to the remote repository to store, it is encrypted with an encryption key which is known only to the data owner itself. Management of the encryption key(s) and the encryption/decryption processes is always tedious and easy to get wrong. In the following, we shall demonstrate how to use Git with encryption in a way transparent to the end user.
Before we start the demonstration, the following software packages need to be installed: git (version 1.7.1 for the demonstration), openssl 4 (version 0.9.8o 01 Jun 2010 for the demonstration). The operating system for the demonstration is Linux (Ubuntu 10.10).
The idea is to leverage git's smudge/clean filter, hinted by this discussion, in which GPG is proposed as the encryption method, we use OpenSSL's symmetric key cipher as it is a better suitable solution.
The procedures are as follows.
-
Before the git repository is created, in your home directory
$ mkdir .gitencrypt $ cd !$
$ touch clean_filter_openssl smudge_filter_openssl diff_filter_openssl
$ chmod 755 *
These files will be the clean/smudge/diff handler/hook for the git repository which we are going to work with.
The first file is clean_filter_openssl
:
#!/bin/bash
SALT_FIXED=<your-salt> # 24 or less hex characters
PASS_FIXED=<your-passphrase>
openssl enc -base64 -aes-256-ecb -S $SALT_FIXED -k $PASS_FIXED
Here replace <your-salt>
with a random hexadecimal string and replace
<your-passphrase>
with a passphrase you will use as a mater secret for
the symmetric key encryption/decryption. We are using AES-256 ECB mode
as the encryption algorithm, as it turns out a deterministic encryption
works best with git (we will explain later).
The next file is smudge_filter_openssl
:
#!/bin/bash
# No salt is needed for decryption.
PASS_FIXED=<your-passphrase>
# If decryption fails, use `cat` instead.
# Error messages are redirected to /dev/null.
openssl enc -d -base64 -aes-256-ecb -k $PASS_FIXED 2> /dev/null || cat
The last file is diff_filter_openssl
:
#!/bin/bash
# No salt is needed for decryption.
PASS_FIXED=<your-passphrase>
# Error messages are redirect to /dev/null.
openssl enc -d -base64 -aes-256-ecb -k $PASS_FIXED -in "$1" 2> /dev/null || cat "$1"
Files in the .gitencrypt directory should be locally kept and never shared with anyone you do not want to have access to your data, as they contain your decryption passphrase.
-
Change to the project directory where the git repository is to be created. Suppose this directory is
~/myproj/
.$ git init
Now, create a .gitattributes
file:
$ touch .gitattributes
Add the following content to .gitattributes
:
* filter=openssl diff=openssl
[merge]
renormalize = true
In this file, the filter
and diff
attributes are assigned to drivers
named openssl
, which should be defined in .git/config
as follows.
[filter "openssl"]
smudge = ~/.gitencrypt/smudge_filter_openssl
clean = ~/.gitencrypt/clean_filter_openssl
[diff "openssl"]
textconv = ~/.gitencrypt/diff_filter_openssl
-
Now
git add
relevant files to the staging area. When you do this, theclean
filter is applied to files in your working directory, i.e., it encrypts the files before they are checked into the staging area. Note that as a best practice,.gitattributes
should not be added. At this time, you can usegit diff
as usual, as thediff
filter is properly configured to compare the difference of only plain text data (it first decrypts if needed). -
Apply
git commit
to commit the changes to the repository. -
Now suppose the repository
myproj
is connected to a remote repository named Dropbox atfile://~/myproj-remote.git
, and you have pushed all the committed changes to it. Suppose you want to create another git repository in directory~/myproj-1
. First clone the remote repository without checking out the HEAD.$ git clone -o Dropbox -n file://myproj-remote.git myproj-1 $ cd myproj-1
Now create under myproj-1
a file .gitattributes with the same content
as shown in Step 2. Then add/append the code snippet in .git/config
in
Step 2 to myproj-1/.git/config
. Then reset the HEAD to check out all of
the files.
$ git reset --hard HEAD
When the files are checked out, the smudge
filter is automatically
applied, decrypting the files in the repository and putting the decrypted
files into your working directory. The reason non-deterministic encryption
(what GPG does) does not work very well here is because the same file
is transformed to a different ciphertext each time it is encrypted, doing
a git status
always shows the pulled files at modified, even though
a git diff
shows no difference. Checking in such modified files only
replaces the old ciphertext with a new one which decrypts to the same
file. If you work in two different local repositories synced to the same
remote, the push/pull process will never end even if nothing is changed
in your working directories. Using AES ECB mode with a fixed salt, although
not semantically secure, resolves this problem while providing reasonable
confidentiality.
From now on, you can work in the local repositories, push to or pull from the remote repository as usual, without noticing the encryption/decryption in the background.
I think this is cool.