Last active
February 14, 2025 17:29
-
-
Save OneAdder/4a04ea345fe53e3afd8c7e3c0fcff131 to your computer and use it in GitHub Desktop.
MultiHead Attention (Reference Implementation)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import numpy as np | |
mha = torch.nn.MultiheadAttention(num_heads=2, embed_dim=4, batch_first=True) | |
mha.in_proj_weight.data = torch.zeros(12, 4) + 0.1 | |
mha.in_proj_bias.data = torch.zeros(12) + 0.11 | |
mha.out_proj.weight.data = torch.zeros(4, 4) + 0.1 | |
mha.out_proj.bias.data = torch.zeros(4) + 0.11 | |
optim = torch.optim.SGD(mha.parameters(), lr=0.01) | |
x = torch.tensor( | |
np.array( | |
[0.0, 10.1, 0.2, 10.3, 0.4, 10.5, 0.6, 10.7, 10.8, 0.9, 0.11, 0.12], | |
).reshape(3, 4, 1, order='F').transpose(2, 0, 1), | |
dtype=torch.float32, | |
requires_grad=True, | |
) | |
out, weights = mha(x, x, x) | |
print('Output:', np.array(np.nditer(out.detach().numpy(), order='F'))) | |
print('Attention Weights:', np.array(np.nditer(weights.detach().numpy(), order='F'))) | |
gradient = torch.tensor( | |
[.1, .1, .1, 3., 3., 3., 2., .1, 2., 3., .1, 3.], | |
requires_grad=True, | |
).reshape(1, 3, 4) | |
out.backward(gradient=gradient) | |
print('Gradient:', np.array(np.nditer(x.grad.numpy(), order='F'))) | |
optim.step() | |
out, weights = mha(x, x, x) | |
print('Output after one step (SGD):', np.array(np.nditer(out.detach(), order='F'))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment