Created
May 7, 2022 21:59
-
-
Save OneRaynyDay/8a7c5a2342533f7262e1e9f423aa9971 to your computer and use it in GitHub Desktop.
3-Approxmation Clustering Algorithm
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from scipy.stats import random_correlation | |
from typing import List, Set | |
import seaborn as sb | |
import numpy as np | |
import matplotlib.pyplot as plt | |
plt.rcParams["figure.figsize"] = (10, 10) | |
# --- Specifying correlation matrix distribution and shape --- | |
rng = np.random.default_rng() | |
SIZE = 10 | |
eigs = np.random.uniform(size=SIZE) | |
eigs /= np.sum(eigs) / SIZE | |
x = random_correlation.rvs(eigs, random_state=rng) | |
heatmap_configs = dict(vmin=-1, vmax=1, cmap="Blues") | |
# Visualize it | |
sb.heatmap(x, square=True, **heatmap_configs) | |
# --- Clustering algorithm --- | |
def cluster(vertices: List[int]): | |
new_idx = np.random.choice(vertices) | |
new_cluster = {new_idx} | |
for node in vertices: | |
if x[new_idx, node] > 0: | |
new_cluster.add(node) | |
leftovers = list(set(vertices) - new_cluster) | |
new_cluster = list(new_cluster) | |
return [new_cluster] if not leftovers else cluster(leftovers) + [new_cluster] | |
# --- Assigning clusters --- | |
clusters = cluster(list(range(SIZE))) | |
order = list(itertools.chain.from_iterable(clusters)) | |
reordered_x = x[:, order][order, :] | |
sb.heatmap(reordered_x, square=True, **heatmap_configs) | |
mask = np.zeros_like(x) | |
plt.show() | |
# --- Evaluating clustering --- | |
current_cluster_idx = 0 | |
for cluster in clusters: | |
cluster_size = len(cluster) | |
mask_idx = np.arange(cluster_size) + current_cluster_idx | |
mask[np.ix_(mask_idx, mask_idx)] = 1 | |
current_cluster_idx += cluster_size | |
sb.heatmap(reordered_x, square=True, mask=1 - mask, **heatmap_configs) | |
print("Loss: ", np.sum(reordered_x * (1 - mask)) - np.sum(reordered_x * mask)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment