Last active
December 24, 2015 12:19
-
-
Save OpenGamma-Blog/6796814 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import static com.lambder.deriva.Deriva.*; | |
public class Formulas { | |
public static Expression black(final boolean isCall) { | |
// Logistic aproximation of Cumulated Standard Normal Distribution | |
// 1/( e^(-0.07056 * x^3 - 1.5976*x) + 1) | |
Expression N = div(1.0, | |
add( | |
exp( | |
sub( | |
mul( | |
-0.07056, | |
pow('x', 3)), | |
mul(-1.5976, 'x'))), | |
1.0)); | |
// ( F/K+T*σ^2/2 ) / σ*sqrt(T) | |
Expression d1 = div( | |
add( | |
div('F', 'K'), | |
mul(div(sq("sigma"), 2.0), 'T')), | |
mul("sigma", sqrt('T'))); | |
// ( F/K-T*σ^2/2 ) / σ*sqrt(T) | |
Expression d2 = div( | |
sub( | |
div('F', 'K'), | |
mul(div(sq("sigma"), 2.0), 'T')), | |
mul("sigma", sqrt('T'))); | |
// e^(-r*T) * ( F*N(d1)-K*N(d2) ) | |
Expression call = mul( | |
exp(neg(mul('r', 'T'))), | |
sub( | |
mul('F', N.bind('x', d1)), | |
mul('K', N.bind('x', d2)))); | |
// e^(-r*T) * ( F*N(-d2)-K*N(-d1) ) | |
Expression put = mul( | |
exp(neg(mul('r', 'T'))), | |
sub( | |
mul('F', N.bind('x', neg(d2))), | |
mul('K', N.bind('x', neg(d1))))); | |
return isCall ? call : put; | |
} | |
// usage | |
public static void main(String[] args) { | |
// lets fix timeToExpiry to 0.523 and get only strike, forward and lognormalVol sensitivities | |
Expression blackModel = black(true).bind('T', 0.523); | |
Function1 fun = d(blackModel, 'F', 'K', 'r').function('F', 'K', 'r'); | |
fun.execute(12.3, 14.3, 0.03); | |
fun.execute(12.3, 11.0, 0.03); | |
fun.execute(12.3, 11.0, 0.02); | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment