Last active
March 13, 2017 02:25
-
-
Save OsciiArt/5bb3b1139646616f64aaf68e73ff8aeb to your computer and use it in GitHub Desktop.
ディープラーニングでアスキーアートを作る ref: http://qiita.com/OsciiArt/items/325714d8ab3f2b482ced
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def DeepAA(num_label=615, drop_out=0.5, weight_decay=0.001, input_shape = [64, 64]): | |
""" | |
Build Deep Neural Network. | |
:param num_label: int, number of classes, equal to candidates of characters | |
:param drop_out: float | |
:param weight_decay: float | |
:return: | |
""" | |
reg = l2(weight_decay) | |
imageInput = Input(shape=input_shape) | |
x = Reshape([input_shape[0], input_shape[1], 1])(imageInput) | |
x = GaussianNoise(0.1)(x) | |
x = Convolution2D(16, 3, 3, border_mode='same', W_regularizer=reg, b_regularizer=reg, init=normal)(x) | |
x = BatchNormalization(axis=-3)(x) | |
x = Activation('relu')(x) | |
x = MaxPooling2D(pool_size=(2, 2), border_mode='same')(x) | |
x = Dropout(drop_out)(x) | |
x = Convolution2D(32, 3, 3, border_mode='same', W_regularizer=reg, b_regularizer=reg, init=normal)(x) | |
x = BatchNormalization(axis=-3)(x) | |
x = Activation('relu')(x) | |
x = MaxPooling2D(pool_size=(2, 2), border_mode='same')(x) | |
x = Dropout(drop_out)(x) | |
x = Convolution2D(64, 3, 3, border_mode='same', W_regularizer=reg, b_regularizer=reg, init=normal)(x) | |
x = BatchNormalization(axis=-3)(x) | |
x = Activation('relu')(x) | |
x = MaxPooling2D(pool_size=(2, 2), border_mode='same')(x) | |
x = Dropout(drop_out)(x) | |
x = Convolution2D(128, 3, 3, border_mode='same', W_regularizer=reg, b_regularizer=reg, init=normal)(x) | |
x = BatchNormalization(axis=-3)(x) | |
x = Activation('relu')(x) | |
x = MaxPooling2D(pool_size=(2, 2), border_mode='same')(x) | |
x = Flatten()(x) | |
x = Dropout(drop_out)(x) | |
y = Dense(num_label, activation='softmax')(x) | |
model = Model(input=imageInput, output=y) | |
return model |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def DeepAA(num_label=615, drop_out=0.5, weight_decay=0.001, input_shape = [64, 64]): | |
""" | |
Build Deep Neural Network. | |
:param num_label: int, number of classes, equal to candidates of characters | |
:param drop_out: float | |
:param weight_decay: float | |
:return: | |
""" | |
reg = l2(weight_decay) | |
imageInput = Input(shape=input_shape) | |
x = Reshape([input_shape[0], input_shape[1], 1])(imageInput) | |
x = GaussianNoise(0.1)(x) | |
x = Convolution2D(16, 3, 3, border_mode='same', W_regularizer=reg, b_regularizer=reg, init=normal)(x) | |
x = BatchNormalization(axis=-3)(x) | |
x = Activation('relu')(x) | |
x = MaxPooling2D(pool_size=(2, 2), border_mode='same')(x) | |
x = Dropout(drop_out)(x) | |
x = Convolution2D(32, 3, 3, border_mode='same', W_regularizer=reg, b_regularizer=reg, init=normal)(x) | |
x = BatchNormalization(axis=-3)(x) | |
x = Activation('relu')(x) | |
x = MaxPooling2D(pool_size=(2, 2), border_mode='same')(x) | |
x = Dropout(drop_out)(x) | |
x = Convolution2D(64, 3, 3, border_mode='same', W_regularizer=reg, b_regularizer=reg, init=normal)(x) | |
x = BatchNormalization(axis=-3)(x) | |
x = Activation('relu')(x) | |
x = MaxPooling2D(pool_size=(2, 2), border_mode='same')(x) | |
x = Dropout(drop_out)(x) | |
x = Convolution2D(128, 3, 3, border_mode='same', W_regularizer=reg, b_regularizer=reg, init=normal)(x) | |
x = BatchNormalization(axis=-3)(x) | |
x = Activation('relu')(x) | |
x = MaxPooling2D(pool_size=(2, 2), border_mode='same')(x) | |
x = Flatten()(x) | |
x = Dropout(drop_out)(x) | |
y = Dense(num_label, activation='softmax')(x) | |
model = Model(input=imageInput, output=y) | |
return model |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment