Skip to content

Instantly share code, notes, and snippets.

@OverlordQ
Forked from duhaime/measure_img_similarity.py
Created October 18, 2019 23:22
Show Gist options
  • Save OverlordQ/70b603c2d188cb50e086bc60fc389744 to your computer and use it in GitHub Desktop.
Save OverlordQ/70b603c2d188cb50e086bc60fc389744 to your computer and use it in GitHub Desktop.
Compare image similarity in Python using Structural Similarity, Pixel Comparisons, Wasserstein Distance (Earth Mover's Distance), and SIFT
import warnings
from skimage.metrics import structural_similarity
from skimage.transform import resize
from scipy.stats import wasserstein_distance
import imageio
import numpy as np
import cv2
##
# Globals
##
warnings.filterwarnings('ignore')
# specify resized image sizes
height = 2**10
width = 2**10
##
# Functions
##
def get_img(path, norm_size=True, norm_exposure=False):
'''
Prepare an image for image processing tasks
'''
# flatten returns a 2d grayscale array
img = imageio.imread(path, as_gray=True).astype(int)
# resizing returns float vals 0:255; convert to ints for downstream tasks
if norm_size:
img = resize(img, (height, width), anti_aliasing=True, preserve_range=True)
if norm_exposure:
img = normalize_exposure(img)
return img
def get_histogram(img):
'''
Get the histogram of an image. For an 8-bit, grayscale image, the
histogram will be a 256 unit vector in which the nth value indicates
the percent of the pixels in the image with the given darkness level.
The histogram's values sum to 1.
'''
h, w = img.shape
hist = [0.0] * 256
for i in range(h):
for j in range(w):
hist[img[i, j]] += 1
return np.array(hist) / (h * w)
def normalize_exposure(img):
'''
Normalize the exposure of an image.
'''
img = img.astype(int)
hist = get_histogram(img)
# get the sum of vals accumulated by each position in hist
cdf = np.array([sum(hist[:i+1]) for i in range(len(hist))])
# determine the normalization values for each unit of the cdf
sk = np.uint8(255 * cdf)
# normalize each position in the output image
height, width = img.shape
normalized = np.zeros_like(img)
for i in range(0, height):
for j in range(0, width):
normalized[i, j] = sk[img[i, j]]
return normalized.astype(int)
def earth_movers_distance(path_a, path_b):
'''
Measure the Earth Mover's distance between two images
@args:
{str} path_a: the path to an image file
{str} path_b: the path to an image file
@returns:
TODO
'''
img_a = get_img(path_a, norm_exposure=True)
img_b = get_img(path_b, norm_exposure=True)
hist_a = get_histogram(img_a)
hist_b = get_histogram(img_b)
return wasserstein_distance(hist_a, hist_b)
def structural_sim(path_a, path_b):
'''
Measure the structural similarity between two images
@args:
{str} path_a: the path to an image file
{str} path_b: the path to an image file
@returns:
{float} a float {-1:1} that measures structural similarity
between the input images
'''
img_a = get_img(path_a)
img_b = get_img(path_b)
sim, diff = structural_similarity(img_a, img_b, full=True)
return sim
def pixel_sim(path_a, path_b):
'''
Measure the pixel-level similarity between two images
@args:
{str} path_a: the path to an image file
{str} path_b: the path to an image file
@returns:
{float} a float {-1:1} that measures structural similarity
between the input images
'''
img_a = get_img(path_a, norm_exposure=True)
img_b = get_img(path_b, norm_exposure=True)
return np.sum(np.absolute(img_a - img_b)) / (height*width) / 255
def sift_sim(path_a, path_b):
'''
Use SIFT features to measure image similarity
@args:
{str} path_a: the path to an image file
{str} path_b: the path to an image file
@returns:
TODO
'''
# initialize the sift feature detector
orb = cv2.ORB_create()
# get the images
img_a = cv2.imread(path_a)
img_b = cv2.imread(path_b)
# find the keypoints and descriptors with SIFT
kp_a, desc_a = orb.detectAndCompute(img_a, None)
kp_b, desc_b = orb.detectAndCompute(img_b, None)
# initialize the bruteforce matcher
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
# match.distance is a float between {0:100} - lower means more similar
matches = bf.match(desc_a, desc_b)
similar_regions = [i for i in matches if i.distance < 70]
if len(matches) == 0:
return 0
return len(similar_regions) / len(matches)
if __name__ == '__main__':
img_a = 'farq.jpg'
img_b = 'farq2.jpg'
# get the similarity values
structural_sim = structural_sim(img_a, img_b)
pixel_sim = pixel_sim(img_a, img_b)
sift_sim = sift_sim(img_a, img_b)
emd = earth_movers_distance(img_a, img_b)
print(structural_sim, pixel_sim, sift_sim, emd)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment