-
-
Save OverlordQ/70b603c2d188cb50e086bc60fc389744 to your computer and use it in GitHub Desktop.
Compare image similarity in Python using Structural Similarity, Pixel Comparisons, Wasserstein Distance (Earth Mover's Distance), and SIFT
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import warnings | |
from skimage.metrics import structural_similarity | |
from skimage.transform import resize | |
from scipy.stats import wasserstein_distance | |
import imageio | |
import numpy as np | |
import cv2 | |
## | |
# Globals | |
## | |
warnings.filterwarnings('ignore') | |
# specify resized image sizes | |
height = 2**10 | |
width = 2**10 | |
## | |
# Functions | |
## | |
def get_img(path, norm_size=True, norm_exposure=False): | |
''' | |
Prepare an image for image processing tasks | |
''' | |
# flatten returns a 2d grayscale array | |
img = imageio.imread(path, as_gray=True).astype(int) | |
# resizing returns float vals 0:255; convert to ints for downstream tasks | |
if norm_size: | |
img = resize(img, (height, width), anti_aliasing=True, preserve_range=True) | |
if norm_exposure: | |
img = normalize_exposure(img) | |
return img | |
def get_histogram(img): | |
''' | |
Get the histogram of an image. For an 8-bit, grayscale image, the | |
histogram will be a 256 unit vector in which the nth value indicates | |
the percent of the pixels in the image with the given darkness level. | |
The histogram's values sum to 1. | |
''' | |
h, w = img.shape | |
hist = [0.0] * 256 | |
for i in range(h): | |
for j in range(w): | |
hist[img[i, j]] += 1 | |
return np.array(hist) / (h * w) | |
def normalize_exposure(img): | |
''' | |
Normalize the exposure of an image. | |
''' | |
img = img.astype(int) | |
hist = get_histogram(img) | |
# get the sum of vals accumulated by each position in hist | |
cdf = np.array([sum(hist[:i+1]) for i in range(len(hist))]) | |
# determine the normalization values for each unit of the cdf | |
sk = np.uint8(255 * cdf) | |
# normalize each position in the output image | |
height, width = img.shape | |
normalized = np.zeros_like(img) | |
for i in range(0, height): | |
for j in range(0, width): | |
normalized[i, j] = sk[img[i, j]] | |
return normalized.astype(int) | |
def earth_movers_distance(path_a, path_b): | |
''' | |
Measure the Earth Mover's distance between two images | |
@args: | |
{str} path_a: the path to an image file | |
{str} path_b: the path to an image file | |
@returns: | |
TODO | |
''' | |
img_a = get_img(path_a, norm_exposure=True) | |
img_b = get_img(path_b, norm_exposure=True) | |
hist_a = get_histogram(img_a) | |
hist_b = get_histogram(img_b) | |
return wasserstein_distance(hist_a, hist_b) | |
def structural_sim(path_a, path_b): | |
''' | |
Measure the structural similarity between two images | |
@args: | |
{str} path_a: the path to an image file | |
{str} path_b: the path to an image file | |
@returns: | |
{float} a float {-1:1} that measures structural similarity | |
between the input images | |
''' | |
img_a = get_img(path_a) | |
img_b = get_img(path_b) | |
sim, diff = structural_similarity(img_a, img_b, full=True) | |
return sim | |
def pixel_sim(path_a, path_b): | |
''' | |
Measure the pixel-level similarity between two images | |
@args: | |
{str} path_a: the path to an image file | |
{str} path_b: the path to an image file | |
@returns: | |
{float} a float {-1:1} that measures structural similarity | |
between the input images | |
''' | |
img_a = get_img(path_a, norm_exposure=True) | |
img_b = get_img(path_b, norm_exposure=True) | |
return np.sum(np.absolute(img_a - img_b)) / (height*width) / 255 | |
def sift_sim(path_a, path_b): | |
''' | |
Use SIFT features to measure image similarity | |
@args: | |
{str} path_a: the path to an image file | |
{str} path_b: the path to an image file | |
@returns: | |
TODO | |
''' | |
# initialize the sift feature detector | |
orb = cv2.ORB_create() | |
# get the images | |
img_a = cv2.imread(path_a) | |
img_b = cv2.imread(path_b) | |
# find the keypoints and descriptors with SIFT | |
kp_a, desc_a = orb.detectAndCompute(img_a, None) | |
kp_b, desc_b = orb.detectAndCompute(img_b, None) | |
# initialize the bruteforce matcher | |
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) | |
# match.distance is a float between {0:100} - lower means more similar | |
matches = bf.match(desc_a, desc_b) | |
similar_regions = [i for i in matches if i.distance < 70] | |
if len(matches) == 0: | |
return 0 | |
return len(similar_regions) / len(matches) | |
if __name__ == '__main__': | |
img_a = 'farq.jpg' | |
img_b = 'farq2.jpg' | |
# get the similarity values | |
structural_sim = structural_sim(img_a, img_b) | |
pixel_sim = pixel_sim(img_a, img_b) | |
sift_sim = sift_sim(img_a, img_b) | |
emd = earth_movers_distance(img_a, img_b) | |
print(structural_sim, pixel_sim, sift_sim, emd) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment