Last active
June 15, 2020 07:50
-
-
Save P-A-R-U-S/e8d738d84424272f6fa2437b6de17898 to your computer and use it in GitHub Desktop.
Insertion M into N from bit "i" to "j"
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
package Part_5 | |
import "testing" | |
/* | |
Insertion: You are given two 32-bit numbers, N and M, and two bit positions, i and j. | |
Write a method to insert M into N such that M starts at bit j and ends at bit i. | |
You can assume that the bits j through i have enough space to fit all of M. | |
That is, if M= 10011, you can assume that there are at least 5 bits between j and i. | |
You would not, for example, have j = 3 and i = 2, because M could not fully fit between bit 3 and bit 2. | |
EXAMPLE #1 | |
Input: | |
N = 10000000000, i 2, j 6 | |
M= 10011 | |
Output: N= 10001001100 | |
EXAMPLE #2 | |
Input: | |
N = 10000110000, i 2, j 6 | |
M= 10011 | |
Output: N= 10001001100 | |
Hints: # 137, #169, #215 | |
*/ | |
/* | |
Даны два 32-разрядных числа N и М и две позиции битов i и j . Напишите мeтод для вставки М в N так, | |
чтобы число М занимало позицию с бита j по бит i. Предполагается, что j и i имеют такие значения, что число М гарантированно | |
поместится в этот промежуток. | |
Скажем, для м = 10011 можно считать, что j и i разделены как минимум 5 битами. | |
Комбинация вида j =З и i =2 невоз можна, так как числом не поместится между битом 3 и битом 2. | |
*/ | |
func insertionMintoN(N, M uint32, i, j int) uint32 { | |
mask := uint32(1 << i) | |
for p:=i; p<j; p++ { | |
mask = mask | mask << 1 | |
} | |
return N & ^mask | M << i | |
} | |
func Test_Insertion_M_into_N(t *testing.T) { | |
r1 := insertionMintoN(0x400, 0x13, 2,6) | |
if r1 != 0x44C { | |
t.Fail() | |
} | |
r2 := insertionMintoN(0x430, 0x13, 2,6) | |
if r2 != 0x44C { | |
t.Fail() | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment