Last active
October 27, 2016 13:07
-
-
Save P8H/16b2b596eca05a36ed97590cc666d337 to your computer and use it in GitHub Desktop.
Deeplearning4j with GPU/CUDA on SLURM
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/bin/bash | |
#SBATCH -J bom_with_gpu | |
#SBATCH --mail-user=<??> | |
#SBATCH --mail-type=ALL | |
# Bitte achten Sie auf vollständige Pfad-Angaben: | |
#SBATCH -e /work/scratch/?user name?/job_with_gpu.err.%j | |
#SBATCH -o /work/scratch/?user name?/job_with_gpu.out.%j | |
# | |
#SBATCH -t 00:30:00 # in Stunden, Minuten und Sekunden, oder '#SBATCH -t 10' - nur Minuten | |
#SBATCH -C nvd | |
#SBATCH --ntasks=16 | |
#SBATCH --mem-per-cpu=1000 | |
# | |
# ------------------------------- | |
# Anschließend schreiben Sie Ihre eigenen Befehle, wie z.B. | |
module load cuda/8.0 | |
cd /home/?user name?/Project | |
java -cp target/Project-0.5-nd4j-cuda-8.0-platform.jar project.TestClass |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
... | |
<!-- <nd4j.backend>nd4j-native-platform</nd4j.backend> --> | |
<nd4j.backend>nd4j-cuda-8.0-platform</nd4j.backend> <!-- activate cuda platform, deactivate native platform --> | |
... | |
<dependencyManagement> | |
<dependencies> | |
<dependency> | |
<groupId>org.nd4j</groupId> | |
<artifactId>nd4j-native-platform</artifactId> | |
<version>0.6.0</version> | |
</dependency> | |
<!-- add following: --> | |
<dependency> | |
<groupId>org.nd4j</groupId> | |
<artifactId>nd4j-cuda-8.0-platform</artifactId> | |
<version>0.6.0</version> | |
</dependency> | |
</dependencies> | |
</dependencyManagement> | |
... |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import org.nd4j.jita.conf.CudaEnvironment; | |
import org.nd4j.jita.conf.Configuration; | |
public class TestClass { | |
public static void main(String[] args) throws Exception { | |
CudaEnvironment.getInstance().getConfiguration().allowMultiGPU(true); //Use all available GPUs | |
DataTypeUtil.setDTypeForContext(DataBuffer.Type.HALF); //Use half precision, boost learning up to 200% | |
CudaEnvironment.getInstance().getConfiguration() | |
.setMaximumDeviceCacheableLength(1024 * 1024 * 1024L) | |
.setMaximumDeviceCache(6L * 1024 * 1024 * 1024L) | |
.setMaximumHostCacheableLength(1024 * 1024 * 1024L) | |
.setMaximumHostCache(6L * 1024 * 1024 * 1024L); //Allow to cache up to 6GB of GPU RAM | |
.... | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment