Skip to content

Instantly share code, notes, and snippets.

@PM2Ring
Created October 27, 2023 16:48
Show Gist options
  • Save PM2Ring/04375fca6727eb2df125491c390b147c to your computer and use it in GitHub Desktop.
Save PM2Ring/04375fca6727eb2df125491c390b147c to your computer and use it in GitHub Desktop.
Chromostereopsis illusion, with blue noise
""" Chromostereopsis illusion
With generated blue noise dither (void & cluster),
Poisson disk, white noise, checks, and undithered.
See https://mathematica.stackexchange.com/q/289992
"""
import numpy as np
from scipy import ndimage
from sage.repl.image import Image
seed = int(14159265358)
rng = np.random.default_rng(seed)
palette = bytes.fromhex('000000 ff0000 0000ff')
def scale_array(arr, rsc, csc):
arr = np.repeat(arr, rsc, axis=0)
arr = np.repeat(arr, csc, axis=1)
return arr
# Make blue noise matrix, void & cluster
def FindLargestVoid(BinaryPattern,StandardDeviation):
if(np.count_nonzero(BinaryPattern)*2>=np.size(BinaryPattern)):
BinaryPattern=np.logical_not(BinaryPattern)
FilteredArray=np.fft.ifftn(ndimage.fourier_gaussian(np.fft.fftn(np.where(BinaryPattern,1.0,0.0)),StandardDeviation)).real
# Find the largest void
return np.argmin(np.where(BinaryPattern,2.0,FilteredArray))
def FindTightestCluster(BinaryPattern,StandardDeviation):
if(np.count_nonzero(BinaryPattern)*2>=np.size(BinaryPattern)):
BinaryPattern=np.logical_not(BinaryPattern)
FilteredArray=np.fft.ifftn(ndimage.fourier_gaussian(np.fft.fftn(np.where(BinaryPattern,1.0,0.0)),StandardDeviation)).real
return np.argmax(np.where(BinaryPattern,FilteredArray,-1.0))
def GetVoidAndClusterBlueNoise(OutputShape,StandardDeviation=1.5,InitialSeedFraction=0.1):
nRank=np.prod(OutputShape)
# Generate the initial binary pattern with a prescribed number of ones
nInitialOne=max(1,min(int((nRank-1)/2),int(nRank*InitialSeedFraction)))
# Start from white noise (this is the only randomized step)
InitialBinaryPattern=np.zeros(OutputShape,dtype=np.bool_)
#InitialBinaryPattern.flat=np.random.permutation(np.arange(nRank))<nInitialOne
InitialBinaryPattern.flat=rng.permutation(np.arange(nRank))<nInitialOne
# Swap ones from tightest clusters to largest voids iteratively until convergence
while True:
iTightestCluster=FindTightestCluster(InitialBinaryPattern,StandardDeviation)
InitialBinaryPattern.flat[iTightestCluster]=False
iLargestVoid=FindLargestVoid(InitialBinaryPattern,StandardDeviation)
if(iLargestVoid==iTightestCluster):
InitialBinaryPattern.flat[iTightestCluster]=True
# Nothing has changed, so we have converged
break
else:
InitialBinaryPattern.flat[iLargestVoid]=True
# Rank all pixels
DitherArray=np.zeros(OutputShape,dtype=np.int32)
# Phase 1: Rank minority pixels in the initial binary pattern
BinaryPattern=np.copy(InitialBinaryPattern)
for Rank in range(nInitialOne-1,-1,-1):
iTightestCluster=FindTightestCluster(BinaryPattern,StandardDeviation)
BinaryPattern.flat[iTightestCluster]=False
DitherArray.flat[iTightestCluster]=Rank
# Phase 2: Rank the remainder of the first half of all pixels
BinaryPattern=InitialBinaryPattern
for Rank in range(nInitialOne,int((nRank+1)/2)):
iLargestVoid=FindLargestVoid(BinaryPattern,StandardDeviation)
BinaryPattern.flat[iLargestVoid]=True
DitherArray.flat[iLargestVoid]=Rank
# Phase 3: Rank the last half of pixels
for Rank in range(int((nRank+1)/2),nRank):
iTightestCluster=FindTightestCluster(BinaryPattern,StandardDeviation)
BinaryPattern.flat[iTightestCluster]=True
DitherArray.flat[iTightestCluster]=Rank
return DitherArray
def bridson_sampling(dims, radius=0.05, k=30):
dims = np.array(dims)
ndim = dims.size
# For the surface sampler, all new points are almost exactly 1 radius away from at least one existing sample
sample_radius = radius * 1.0001
# Uniform sampling on the sphere's surface
def hypersphere_sample(center):
vec = rng.standard_normal(size=(k, ndim))
return center + sample_radius * vec / np.linalg.norm(vec, axis=1)[:, None]
# Check if there are samples closer than "squared_radius" to the candidate "p"
def in_neighborhood(p, n=2):
indices = (p / cellsize).astype(int)
# Check if the center cell is empty
if not np.isnan(P[tuple(indices)][0]):
return True
indmin = np.maximum(indices - n, np.zeros(ndim, dtype=int))
indmax = np.minimum(indices + n + 1, gridsize)
a = tuple([slice(lo, hi) for lo, hi in zip(indmin, indmax)])
with np.errstate(invalid='ignore'):
if np.any(np.sum(np.square(p - P[a]), axis=ndim) < squared_radius):
return True
def add_point(p):
points.append(p)
indices = (p / cellsize).astype(int)
P[tuple(indices)] = p
cellsize = radius / np.sqrt(ndim)
gridsize = np.ceil(dims / cellsize).astype(int)
squared_radius = radius*radius
# Positions of cells. n-dim value for each grid cell
P = np.full(np.append(gridsize, ndim), np.nan, dtype=np.float32)
points = []
add_point(rng.uniform(0.4 * dims, 0.6 * dims))
while len(points):
p = points.pop(rng.integers(len(points)))
Q = hypersphere_sample(p)
for q in Q:
if np.all(0 <= q) and np.all(q < dims) and not in_neighborhood(q):
add_point(q)
return P[~np.isnan(P).any(axis=-1)]
def poisson(width, height, radius=2, k=15):
dims = width - 1, height - 1
pts = bridson_sampling(dims, radius=radius, k=k)
print(pts.shape[0], "points")
x, y = np.round(pts).astype(int).T
v0, v1 = 0, 1
grid = np.full((height, width), v0, dtype=bool)
grid[y, x] = v1
return grid
masktypes = (
None,
"checks",
"whitenoise",
"bluenoise",
"poisson",
)
@interact
def main(rad=28, scale=7, dsize=51, masktype = Selector(masktypes), auto_update=False):
rsq = rad * rad
isq, osq = 300 * rsq // 784, 440 * rsq // 784
gsize = 2*rad + 1
gsq = gsize*gsize
print(gsq, "cells")
dithmax = dsize * dsize
# Get some random bits to dither the grid
if masktype == "whitenoise":
# Find number of 64 bit words, using ceiling division
rlen = -(-gsq // 64)
#print(rlen, rlen * 64)
mask = rng.bit_generator.random_raw(rlen).view(np.uint8)
mask = np.unpackbits(mask)[:gsq].reshape(gsize, gsize)
elif masktype == "bluenoise":
dith = GetVoidAndClusterBlueNoise((dsize, dsize))
i, j = np.ogrid[:gsize, :gsize]
mask = dith[i % dsize, j % dsize] < dithmax * 5 // 16
elif masktype == "poisson":
mask = poisson(gsize, gsize, radius=2, k=35)
elif masktype == "checks":
dith = np.array([[0, 1], [1, 0]], dtype=bool)
dith = scale_array(dith, 3, 3)
i, j = np.ogrid[:gsize, :gsize]
mask = dith[i % 6, j % 6]
else:
mask = np.ones((gsize, gsize), dtype=bool)
# Get squared radial distance
y, x = np.ogrid[-rad:rad+1, -rad:rad+1]
dsq = y*y + x*x
grid = mask * ((dsq < isq).astype('u1') + 2*(dsq >= osq).astype('u1'))
#print(grid.shape, grid.dtype)
grid = scale_array(grid, scale, scale)
im = Image('P', grid.shape[::-1], None)
im.pil.frombytes(grid)
im.pil.putpalette(palette)
im.show()
im.pil.save('grid.png', optimize=True)
@PM2Ring
Copy link
Author

PM2Ring commented Oct 28, 2023

Void and Cluster code from Blue Noise by Christoph Peters https://github.com/MomentsInGraphics/BlueNoise/blob/master/BlueNoise.py

Poisson Disc Bridson sampling code derived from code Pavel Zun, https://github.com/diregoblin/poisson_disc_sampling which was derived from 2D sampling code by Nicolas P. Rougier, see https://github.com/rougier/from-python-to-numpy/blob/master/code/Bridson_sampling.py

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment