Created
November 17, 2023 19:55
-
-
Save PWhiddy/0e569c1440dde3cef8420dcdabcb357b to your computer and use it in GitHub Desktop.
match face position from a video to your webcam in realtime
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import cv2 | |
import hnswlib | |
import numpy as np | |
def set_resolution(cap, width, height): | |
cap.set(cv2.CAP_PROP_FRAME_WIDTH, width) | |
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height) | |
def extract_face_pose(frame, face_detector): | |
faces = face_detector.detectMultiScale(frame, scaleFactor=1.1, minNeighbors=5) | |
if len(faces) > 0: | |
x, y, w, h = faces[0] | |
cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 0, 0), 2) # Draw rectangle | |
return np.array([x + w/2, y + h/2]) # Return center of the face | |
return None | |
def build_index_from_video(video_path, index, face_detector): | |
cap = cv2.VideoCapture(video_path) | |
#set_resolution(cap, 640, 360) | |
frame_rate = cap.get(cv2.CAP_PROP_FPS) | |
frame_count = 0 | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if not ret: | |
break | |
if frame_count % int(frame_rate) == 0: | |
pose = extract_face_pose(frame, face_detector) | |
if pose is not None: | |
index.add_items(np.array([pose]), np.array([frame_count])) | |
frame_count += 1 | |
cap.release() | |
def process_webcam_and_find_similar_faces(video_path, index, face_detector): | |
cap = cv2.VideoCapture(0) | |
#set_resolution(cap, 640, 360) | |
video_cap = cv2.VideoCapture(video_path) | |
#set_resolution(video_cap, 640, 360) | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if not ret: | |
break | |
pose = extract_face_pose(frame, face_detector) | |
print(f"current pose: {pose}") | |
if pose is not None: | |
labels, distances = index.knn_query(np.array([pose]), k=1) | |
matching_frame_number = labels[0][0] | |
video_cap.set(cv2.CAP_PROP_POS_FRAMES, matching_frame_number) | |
ret, matching_frame = video_cap.read() | |
if ret: | |
print(f"nearest neighbor: {labels} dist: {distances}") | |
extract_face_pose(matching_frame, face_detector) # Draw bounding box | |
cv2.imshow('Matching Frame', matching_frame) | |
cv2.imshow('Webcam', frame) | |
if cv2.waitKey(1) & 0xFF == ord('q'): | |
break | |
cap.release() | |
cv2.destroyAllWindows() | |
# Initialize the k-NN index | |
index = hnswlib.Index(space='l2', dim=2) # Dimension matches face pose data (x, y) | |
index.init_index(max_elements=10000, ef_construction=200, M=16) | |
# Load the face detector | |
face_detector = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') | |
# Build the index from the video | |
video_path = 'test.mov' | |
build_index_from_video(video_path, index, face_detector) | |
# Process webcam and find similar faces | |
process_webcam_and_find_similar_faces(video_path, index, face_detector) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment