Created
December 7, 2018 22:28
-
-
Save Pacheco95/7870a52a5f6511520ce3a27c6f71d8e3 to your computer and use it in GitHub Desktop.
Exemplo de código da construção de um experimento de Sistema de Recomendação Híbrido
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// Algoritmos de filtragem colaborativa | |
Task BMF_F1 = new Task("BiasedMatrixFactorization-F1.out", "../../MyMediaLite-3.10/bin/rating_prediction --prediction-file=Predictions/F1/BiasedMatrixFactorization.txt --prediction-line={0},{1},{2},0 --training-file=BD/Sample2345.txt --test-file=BD/Sample1.txt --recommender=BiasedMatrixFactorization --recommender-options=\"num_factors=14 bias_reg=0.042 frequency_regularization=False learn_rate=0.064 num_iter=32 bold_driver=True\" > ../run/out/bc/predictionsCF/BiasedMatrixFactorization-F1.out"); | |
Task BMF_F2 = new Task("BiasedMatrixFactorization-F2.out", "../../MyMediaLite-3.10/bin/rating_prediction --prediction-file=Predictions/F2/BiasedMatrixFactorization.txt --prediction-line={0},{1},{2},0 --training-file=BD/Sample1345.txt --test-file=BD/Sample2.txt --recommender=BiasedMatrixFactorization --recommender-options=\"num_factors=14 bias_reg=0.042 frequency_regularization=False learn_rate=0.064 num_iter=32 bold_driver=True\" > ../run/out/bc/predictionsCF/BiasedMatrixFactorization-F2.out"); | |
Task BMF_F3 = new Task("BiasedMatrixFactorization-F3.out", "../../MyMediaLite-3.10/bin/rating_prediction --prediction-file=Predictions/F3/BiasedMatrixFactorization.txt --prediction-line={0},{1},{2},0 --training-file=BD/Sample1245.txt --test-file=BD/Sample3.txt --recommender=BiasedMatrixFactorization --recommender-options=\"num_factors=14 bias_reg=0.042 frequency_regularization=False learn_rate=0.064 num_iter=32 bold_driver=True\" > ../run/out/bc/predictionsCF/BiasedMatrixFactorization-F3.out"); | |
Task BMF_F4 = new Task("BiasedMatrixFactorization-F4.out", "../../MyMediaLite-3.10/bin/rating_prediction --prediction-file=Predictions/F4/BiasedMatrixFactorization.txt --prediction-line={0},{1},{2},0 --training-file=BD/Sample1235.txt --test-file=BD/Sample4.txt --recommender=BiasedMatrixFactorization --recommender-options=\"num_factors=14 bias_reg=0.042 frequency_regularization=False learn_rate=0.064 num_iter=32 bold_driver=True\" > ../run/out/bc/predictionsCF/BiasedMatrixFactorization-F4.out"); | |
Task BMF_F5 = new Task("BiasedMatrixFactorization-F5.out", "../../MyMediaLite-3.10/bin/rating_prediction --prediction-file=Predictions/F5/BiasedMatrixFactorization.txt --prediction-line={0},{1},{2},0 --training-file=BD/Sample1234.txt --test-file=BD/Sample5.txt --recommender=BiasedMatrixFactorization --recommender-options=\"num_factors=14 bias_reg=0.042 frequency_regularization=False learn_rate=0.064 num_iter=32 bold_driver=True\" > ../run/out/bc/predictionsCF/BiasedMatrixFactorization-F5.out"); | |
Task FWMF_F1 = new Task("FactorWiseMatrixFactorization-F1.out", "../../MyMediaLite-3.10/bin/rating_prediction --prediction-file=Predictions/F1/FactorWiseMatrixFactorization.txt --prediction-line={0},{1},{2},0 --training-file=BD/Sample2345.txt --test-file=BD/Sample1.txt --recommender=FactorWiseMatrixFactorization --recommender-options=\"num_factors=1 shrinkage=100 num_iter=52\" > ../run/out/bc/predictionsCF/FactorWiseMatrixFactorization-F1.out"); | |
Task FWMF_F2 = new Task("FactorWiseMatrixFactorization-F2.out", "../../MyMediaLite-3.10/bin/rating_prediction --prediction-file=Predictions/F2/FactorWiseMatrixFactorization.txt --prediction-line={0},{1},{2},0 --training-file=BD/Sample1345.txt --test-file=BD/Sample2.txt --recommender=FactorWiseMatrixFactorization --recommender-options=\"num_factors=1 shrinkage=100 num_iter=52\" > ../run/out/bc/predictionsCF/FactorWiseMatrixFactorization-F2.out"); | |
Task FWMF_F3 = new Task("FactorWiseMatrixFactorization-F3.out", "../../MyMediaLite-3.10/bin/rating_prediction --prediction-file=Predictions/F3/FactorWiseMatrixFactorization.txt --prediction-line={0},{1},{2},0 --training-file=BD/Sample1245.txt --test-file=BD/Sample3.txt --recommender=FactorWiseMatrixFactorization --recommender-options=\"num_factors=1 shrinkage=100 num_iter=52\" > ../run/out/bc/predictionsCF/FactorWiseMatrixFactorization-F3.out"); | |
Task FWMF_F4 = new Task("FactorWiseMatrixFactorization-F4.out", "../../MyMediaLite-3.10/bin/rating_prediction --prediction-file=Predictions/F4/FactorWiseMatrixFactorization.txt --prediction-line={0},{1},{2},0 --training-file=BD/Sample1235.txt --test-file=BD/Sample4.txt --recommender=FactorWiseMatrixFactorization --recommender-options=\"num_factors=1 shrinkage=100 num_iter=52\" > ../run/out/bc/predictionsCF/FactorWiseMatrixFactorization-F4.out"); | |
Task FWMF_F5 = new Task("FactorWiseMatrixFactorization-F5.out", "../../MyMediaLite-3.10/bin/rating_prediction --prediction-file=Predictions/F5/FactorWiseMatrixFactorization.txt --prediction-line={0},{1},{2},0 --training-file=BD/Sample1234.txt --test-file=BD/Sample5.txt --recommender=FactorWiseMatrixFactorization --recommender-options=\"num_factors=1 shrinkage=100 num_iter=52\" > ../run/out/bc/predictionsCF/FactorWiseMatrixFactorization-F5.out"); | |
Task LFLLM_F1 = new Task("LatentFeatureLogLinearModel-F1.out", "../../MyMediaLite-3.10/bin/rating_prediction --prediction-file=Predictions/F1/LatentFeatureLogLinearModel.txt --prediction-line={0},{1},{2},0 --training-file=BD/Sample2345.txt --test-file=BD/Sample1.txt --recommender=LatentFeatureLogLinearModel --recommender-options=\"num_factors=1 bias_reg=0.231 reg_u=0.015 reg_i=0.015 frequency_regularization=False learn_rate=0.099 bias_learn_rate=1 num_iter=60 loss=RMSE\" > ../run/out/bc/predictionsCF/LatentFeatureLogLinearModel-F1.out"); | |
Task LFLLM_F2 = new Task("LatentFeatureLogLinearModel-F2.out", "../../MyMediaLite-3.10/bin/rating_prediction --prediction-file=Predictions/F2/LatentFeatureLogLinearModel.txt --prediction-line={0},{1},{2},0 --training-file=BD/Sample1345.txt --test-file=BD/Sample2.txt --recommender=LatentFeatureLogLinearModel --recommender-options=\"num_factors=1 bias_reg=0.231 reg_u=0.015 reg_i=0.015 frequency_regularization=False learn_rate=0.099 bias_learn_rate=1 num_iter=60 loss=RMSE\" > ../run/out/bc/predictionsCF/LatentFeatureLogLinearModel-F2.out"); | |
Task LFLLM_F3 = new Task("LatentFeatureLogLinearModel-F3.out", "../../MyMediaLite-3.10/bin/rating_prediction --prediction-file=Predictions/F3/LatentFeatureLogLinearModel.txt --prediction-line={0},{1},{2},0 --training-file=BD/Sample1245.txt --test-file=BD/Sample3.txt --recommender=LatentFeatureLogLinearModel --recommender-options=\"num_factors=1 bias_reg=0.231 reg_u=0.015 reg_i=0.015 frequency_regularization=False learn_rate=0.099 bias_learn_rate=1 num_iter=60 loss=RMSE\" > ../run/out/bc/predictionsCF/LatentFeatureLogLinearModel-F3.out"); | |
Task LFLLM_F4 = new Task("LatentFeatureLogLinearModel-F4.out", "../../MyMediaLite-3.10/bin/rating_prediction --prediction-file=Predictions/F4/LatentFeatureLogLinearModel.txt --prediction-line={0},{1},{2},0 --training-file=BD/Sample1235.txt --test-file=BD/Sample4.txt --recommender=LatentFeatureLogLinearModel --recommender-options=\"num_factors=1 bias_reg=0.231 reg_u=0.015 reg_i=0.015 frequency_regularization=False learn_rate=0.099 bias_learn_rate=1 num_iter=60 loss=RMSE\" > ../run/out/bc/predictionsCF/LatentFeatureLogLinearModel-F4.out"); | |
Task LFLLM_F5 = new Task("LatentFeatureLogLinearModel-F5.out", "../../MyMediaLite-3.10/bin/rating_prediction --prediction-file=Predictions/F5/LatentFeatureLogLinearModel.txt --prediction-line={0},{1},{2},0 --training-file=BD/Sample1234.txt --test-file=BD/Sample5.txt --recommender=LatentFeatureLogLinearModel --recommender-options=\"num_factors=1 bias_reg=0.231 reg_u=0.015 reg_i=0.015 frequency_regularization=False learn_rate=0.099 bias_learn_rate=1 num_iter=60 loss=RMSE\" > ../run/out/bc/predictionsCF/LatentFeatureLogLinearModel-F5.out"); | |
Task MF_F1 = new Task("MatrixFactorization-F1.out", "../../MyMediaLite-3.10/bin/rating_prediction --prediction-file=Predictions/F1/MatrixFactorization.txt --prediction-line={0},{1},{2},0 --training-file=BD/Sample2345.txt --test-file=BD/Sample1.txt --recommender=MatrixFactorization --recommender-options=\"num_factors=4 regularization=0.266 learn_rate=0.098 num_iter=30\" > ../run/out/bc/predictionsCF/MatrixFactorization-F1.out"); | |
Task MF_F2 = new Task("MatrixFactorization-F2.out", "../../MyMediaLite-3.10/bin/rating_prediction --prediction-file=Predictions/F2/MatrixFactorization.txt --prediction-line={0},{1},{2},0 --training-file=BD/Sample1345.txt --test-file=BD/Sample2.txt --recommender=MatrixFactorization --recommender-options=\"num_factors=4 regularization=0.266 learn_rate=0.098 num_iter=30\" > ../run/out/bc/predictionsCF/MatrixFactorization-F2.out"); | |
Task MF_F3 = new Task("MatrixFactorization-F3.out", "../../MyMediaLite-3.10/bin/rating_prediction --prediction-file=Predictions/F3/MatrixFactorization.txt --prediction-line={0},{1},{2},0 --training-file=BD/Sample1245.txt --test-file=BD/Sample3.txt --recommender=MatrixFactorization --recommender-options=\"num_factors=4 regularization=0.266 learn_rate=0.098 num_iter=30\" > ../run/out/bc/predictionsCF/MatrixFactorization-F3.out"); | |
Task MF_F4 = new Task("MatrixFactorization-F4.out", "../../MyMediaLite-3.10/bin/rating_prediction --prediction-file=Predictions/F4/MatrixFactorization.txt --prediction-line={0},{1},{2},0 --training-file=BD/Sample1235.txt --test-file=BD/Sample4.txt --recommender=MatrixFactorization --recommender-options=\"num_factors=4 regularization=0.266 learn_rate=0.098 num_iter=30\" > ../run/out/bc/predictionsCF/MatrixFactorization-F4.out"); | |
Task MF_F5 = new Task("MatrixFactorization-F5.out", "../../MyMediaLite-3.10/bin/rating_prediction --prediction-file=Predictions/F5/MatrixFactorization.txt --prediction-line={0},{1},{2},0 --training-file=BD/Sample1234.txt --test-file=BD/Sample5.txt --recommender=MatrixFactorization --recommender-options=\"num_factors=4 regularization=0.266 learn_rate=0.098 num_iter=30\" > ../run/out/bc/predictionsCF/MatrixFactorization-F5.out"); | |
Task SCAFM_F1 = new Task("SigmoidCombinedAsymmetricFactorModel-F1.out", "../../MyMediaLite-3.10/bin/rating_prediction --prediction-file=Predictions/F1/SigmoidCombinedAsymmetricFactorModel.txt --prediction-line={0},{1},{2},0 --training-file=BD/Sample2345.txt --test-file=BD/Sample1.txt --recommender=SigmoidCombinedAsymmetricFactorModel --recommender-options=\"num_factors=34 regularization=0.007 bias_reg=0.226 frequency_regularization=True learn_rate=0.088 bias_learn_rate=0.088 learn_rate_decay=1 num_iter=58 loss=RMSE\" > ../run/out/bc/predictionsCF/SigmoidCombinedAsymmetricFactorModel-F1.out"); | |
Task SCAFM_F2 = new Task("SigmoidCombinedAsymmetricFactorModel-F2.out", "../../MyMediaLite-3.10/bin/rating_prediction --prediction-file=Predictions/F2/SigmoidCombinedAsymmetricFactorModel.txt --prediction-line={0},{1},{2},0 --training-file=BD/Sample1345.txt --test-file=BD/Sample2.txt --recommender=SigmoidCombinedAsymmetricFactorModel --recommender-options=\"num_factors=34 regularization=0.007 bias_reg=0.226 frequency_regularization=True learn_rate=0.088 bias_learn_rate=0.088 learn_rate_decay=1 num_iter=58 loss=RMSE\" > ../run/out/bc/predictionsCF/SigmoidCombinedAsymmetricFactorModel-F2.out"); | |
Task SCAFM_F3 = new Task("SigmoidCombinedAsymmetricFactorModel-F3.out", "../../MyMediaLite-3.10/bin/rating_prediction --prediction-file=Predictions/F3/SigmoidCombinedAsymmetricFactorModel.txt --prediction-line={0},{1},{2},0 --training-file=BD/Sample1245.txt --test-file=BD/Sample3.txt --recommender=SigmoidCombinedAsymmetricFactorModel --recommender-options=\"num_factors=34 regularization=0.007 bias_reg=0.226 frequency_regularization=True learn_rate=0.088 bias_learn_rate=0.088 learn_rate_decay=1 num_iter=58 loss=RMSE\" > ../run/out/bc/predictionsCF/SigmoidCombinedAsymmetricFactorModel-F3.out"); | |
Task SCAFM_F4 = new Task("SigmoidCombinedAsymmetricFactorModel-F4.out", "../../MyMediaLite-3.10/bin/rating_prediction --prediction-file=Predictions/F4/SigmoidCombinedAsymmetricFactorModel.txt --prediction-line={0},{1},{2},0 --training-file=BD/Sample1235.txt --test-file=BD/Sample4.txt --recommender=SigmoidCombinedAsymmetricFactorModel --recommender-options=\"num_factors=34 regularization=0.007 bias_reg=0.226 frequency_regularization=True learn_rate=0.088 bias_learn_rate=0.088 learn_rate_decay=1 num_iter=58 loss=RMSE\" > ../run/out/bc/predictionsCF/SigmoidCombinedAsymmetricFactorModel-F4.out"); | |
Task SCAFM_F5 = new Task("SigmoidCombinedAsymmetricFactorModel-F5.out", "../../MyMediaLite-3.10/bin/rating_prediction --prediction-file=Predictions/F5/SigmoidCombinedAsymmetricFactorModel.txt --prediction-line={0},{1},{2},0 --training-file=BD/Sample1234.txt --test-file=BD/Sample5.txt --recommender=SigmoidCombinedAsymmetricFactorModel --recommender-options=\"num_factors=34 regularization=0.007 bias_reg=0.226 frequency_regularization=True learn_rate=0.088 bias_learn_rate=0.088 learn_rate_decay=1 num_iter=58 loss=RMSE\" > ../run/out/bc/predictionsCF/SigmoidCombinedAsymmetricFactorModel-F5.out"); | |
Task SCDPP_F1 = new Task("SVDPlusPlus-F1.out", "../../MyMediaLite-3.10/bin/rating_prediction --prediction-file=Predictions/F1/SVDPlusPlus.txt --prediction-line={0},{1},{2},0 --training-file=BD/Sample2345.txt --test-file=BD/Sample1.txt --recommender=SVDPlusPlus --recommender-options=\"num_factors=1 regularization=0.131 bias_reg=0.091 frequency_regularization=False learn_rate=0.006 num_iter=45\" > ../run/out/bc/predictionsCF/SVDPlusPlus-F1.out"); | |
Task SCDPP_F2 = new Task("SVDPlusPlus-F2.out", "../../MyMediaLite-3.10/bin/rating_prediction --prediction-file=Predictions/F2/SVDPlusPlus.txt --prediction-line={0},{1},{2},0 --training-file=BD/Sample1345.txt --test-file=BD/Sample2.txt --recommender=SVDPlusPlus --recommender-options=\"num_factors=1 regularization=0.131 bias_reg=0.091 frequency_regularization=False learn_rate=0.006 num_iter=45\" > ../run/out/bc/predictionsCF/SVDPlusPlus-F2.out"); | |
Task SCDPP_F3 = new Task("SVDPlusPlus-F3.out", "../../MyMediaLite-3.10/bin/rating_prediction --prediction-file=Predictions/F3/SVDPlusPlus.txt --prediction-line={0},{1},{2},0 --training-file=BD/Sample1245.txt --test-file=BD/Sample3.txt --recommender=SVDPlusPlus --recommender-options=\"num_factors=1 regularization=0.131 bias_reg=0.091 frequency_regularization=False learn_rate=0.006 num_iter=45\" > ../run/out/bc/predictionsCF/SVDPlusPlus-F3.out"); | |
Task SCDPP_F4 = new Task("SVDPlusPlus-F4.out", "../../MyMediaLite-3.10/bin/rating_prediction --prediction-file=Predictions/F4/SVDPlusPlus.txt --prediction-line={0},{1},{2},0 --training-file=BD/Sample1235.txt --test-file=BD/Sample4.txt --recommender=SVDPlusPlus --recommender-options=\"num_factors=1 regularization=0.131 bias_reg=0.091 frequency_regularization=False learn_rate=0.006 num_iter=45\" > ../run/out/bc/predictionsCF/SVDPlusPlus-F4.out"); | |
Task SCDPP_F5 = new Task("SVDPlusPlus-F5.out", "../../MyMediaLite-3.10/bin/rating_prediction --prediction-file=Predictions/F5/SVDPlusPlus.txt --prediction-line={0},{1},{2},0 --training-file=BD/Sample1234.txt --test-file=BD/Sample5.txt --recommender=SVDPlusPlus --recommender-options=\"num_factors=1 regularization=0.131 bias_reg=0.091 frequency_regularization=False learn_rate=0.006 num_iter=45\" > ../run/out/bc/predictionsCF/SVDPlusPlus-F5.out"); | |
Task UKNN_F1 = new Task("UserKNN-F1.out", "../../MyMediaLite-3.10/bin/rating_prediction --prediction-file=Predictions/F1/UserKNN.txt --prediction-line={0},{1},{2},0 --training-file=BD/Sample2345.txt --test-file=BD/Sample1.txt --recommender=UserKNN --recommender-options=\"k=103 correlation=Pearson weighted_binary=True\" > ../run/out/bc/predictionsCF/UserKNN-F1.out"); | |
Task UKNN_F2 = new Task("UserKNN-F2.out", "../../MyMediaLite-3.10/bin/rating_prediction --prediction-file=Predictions/F2/UserKNN.txt --prediction-line={0},{1},{2},0 --training-file=BD/Sample1345.txt --test-file=BD/Sample2.txt --recommender=UserKNN --recommender-options=\"k=103 correlation=Pearson weighted_binary=True\" > ../run/out/bc/predictionsCF/UserKNN-F2.out"); | |
Task UKNN_F3 = new Task("UserKNN-F3.out", "../../MyMediaLite-3.10/bin/rating_prediction --prediction-file=Predictions/F3/UserKNN.txt --prediction-line={0},{1},{2},0 --training-file=BD/Sample1245.txt --test-file=BD/Sample3.txt --recommender=UserKNN --recommender-options=\"k=103 correlation=Pearson weighted_binary=True\" > ../run/out/bc/predictionsCF/UserKNN-F3.out"); | |
Task UKNN_F4 = new Task("UserKNN-F4.out", "../../MyMediaLite-3.10/bin/rating_prediction --prediction-file=Predictions/F4/UserKNN.txt --prediction-line={0},{1},{2},0 --training-file=BD/Sample1235.txt --test-file=BD/Sample4.txt --recommender=UserKNN --recommender-options=\"k=103 correlation=Pearson weighted_binary=True\" > ../run/out/bc/predictionsCF/UserKNN-F4.out"); | |
Task UKNN_F5 = new Task("UserKNN-F5.out", "../../MyMediaLite-3.10/bin/rating_prediction --prediction-file=Predictions/F5/UserKNN.txt --prediction-line={0},{1},{2},0 --training-file=BD/Sample1234.txt --test-file=BD/Sample5.txt --recommender=UserKNN --recommender-options=\"k=103 correlation=Pearson weighted_binary=True\" > ../run/out/bc/predictionsCF/UserKNN-F5.out"); | |
ArrayList<Task> filteringTasks = new ArrayList<>(Arrays.asList( | |
BMF_F1, BMF_F2, BMF_F3, BMF_F4, BMF_F5, | |
FWMF_F1, FWMF_F2, FWMF_F3, FWMF_F4, FWMF_F5, | |
LFLLM_F1, LFLLM_F2, LFLLM_F3, LFLLM_F4, LFLLM_F5, | |
MF_F1, MF_F2, MF_F3, MF_F4, MF_F5, | |
SCAFM_F1, SCAFM_F2, SCAFM_F3, SCAFM_F4, SCAFM_F5, | |
SCDPP_F1, SCDPP_F2, SCDPP_F3, SCDPP_F4, SCDPP_F5, | |
UKNN_F1, UKNN_F2, UKNN_F3, UKNN_F4, UKNN_F5)); | |
// ------------------------------------------------------------------------------------------------------------- | |
// Preparação dos resultados para o SciKitLearn | |
Task createFiles_HR_F1 = new Task("createFiles-HR-F1.out", "./run/createScikitFiles.exe Bookcrossing ratings.txt F1 Predictions Scikit > ./run/out/bc/scikit/createFiles-HR-F1.out"); | |
Task createFiles_HR_F2 = new Task("createFiles-HR-F2.out", "./run/createScikitFiles.exe Bookcrossing ratings.txt F2 Predictions Scikit > ./run/out/bc/scikit/createFiles-HR-F2.out"); | |
Task createFiles_HR_F3 = new Task("createFiles-HR-F3.out", "./run/createScikitFiles.exe Bookcrossing ratings.txt F3 Predictions Scikit > ./run/out/bc/scikit/createFiles-HR-F3.out"); | |
Task createFiles_HR_F4 = new Task("createFiles-HR-F4.out", "./run/createScikitFiles.exe Bookcrossing ratings.txt F4 Predictions Scikit > ./run/out/bc/scikit/createFiles-HR-F4.out"); | |
Task createFiles_HR_F5 = new Task("createFiles-HR-F5.out", "./run/createScikitFiles.exe Bookcrossing ratings.txt F5 Predictions Scikit > ./run/out/bc/scikit/createFiles-HR-F5.out"); | |
createFiles_HR_F1.withDependencies(filteringTasks); | |
createFiles_HR_F2.withDependencies(filteringTasks); | |
createFiles_HR_F3.withDependencies(filteringTasks); | |
createFiles_HR_F4.withDependencies(filteringTasks); | |
createFiles_HR_F5.withDependencies(filteringTasks); | |
ArrayList<Task> preparingTasks = new ArrayList<>(Arrays.asList( | |
createFiles_HR_F1, | |
createFiles_HR_F2, | |
createFiles_HR_F3, | |
createFiles_HR_F4, | |
createFiles_HR_F5)); | |
// ------------------------------------------------------------------------------------------------------------- | |
// Execução dos métodos híbridos | |
Task scikitTP_F1_01_LSVR = new Task("scikitTunedPredictions-F1-01-LinearSVR.out", "python -u -W ignore run/scikitPrediction.py Bookcrossing/ Scikit/ F1 LinearSVR PredictionsSkl > run/out/bc/prediction/scikitTunedPredictions-F1-01-LinearSVR.out"); | |
Task scikitTP_F2_01_LSVR = new Task("scikitTunedPredictions-F2-01-LinearSVR.out", "python -u -W ignore run/scikitPrediction.py Bookcrossing/ Scikit/ F2 LinearSVR PredictionsSkl > run/out/bc/prediction/scikitTunedPredictions-F2-01-LinearSVR.out"); | |
Task scikitTP_F3_01_LSVR = new Task("scikitTunedPredictions-F3-01-LinearSVR.out", "python -u -W ignore run/scikitPrediction.py Bookcrossing/ Scikit/ F3 LinearSVR PredictionsSkl > run/out/bc/prediction/scikitTunedPredictions-F3-01-LinearSVR.out"); | |
Task scikitTP_F4_01_LSVR = new Task("scikitTunedPredictions-F4-01-LinearSVR.out", "python -u -W ignore run/scikitPrediction.py Bookcrossing/ Scikit/ F4 LinearSVR PredictionsSkl > run/out/bc/prediction/scikitTunedPredictions-F4-01-LinearSVR.out"); | |
Task scikitTP_F5_01_LSVR = new Task("scikitTunedPredictions-F5-01-LinearSVR.out", "python -u -W ignore run/scikitPrediction.py Bookcrossing/ Scikit/ F5 LinearSVR PredictionsSkl > run/out/bc/prediction/scikitTunedPredictions-F5-01-LinearSVR.out"); | |
Task scikitTP_F1_01_Ridge = new Task("scikitTunedPredictions-F1-01-Ridge.out", "python -u -W ignore run/scikitPrediction.py Bookcrossing/ Scikit/ F1 Ridge PredictionsSkl > run/out/bc/prediction/scikitTunedPredictions-F1-01-Ridge.out"); | |
Task scikitTP_F2_01_Ridge = new Task("scikitTunedPredictions-F2-01-Ridge.out", "python -u -W ignore run/scikitPrediction.py Bookcrossing/ Scikit/ F2 Ridge PredictionsSkl > run/out/bc/prediction/scikitTunedPredictions-F2-01-Ridge.out"); | |
Task scikitTP_F3_01_Ridge = new Task("scikitTunedPredictions-F3-01-Ridge.out", "python -u -W ignore run/scikitPrediction.py Bookcrossing/ Scikit/ F3 Ridge PredictionsSkl > run/out/bc/prediction/scikitTunedPredictions-F3-01-Ridge.out"); | |
Task scikitTP_F4_01_Ridge = new Task("scikitTunedPredictions-F4-01-Ridge.out", "python -u -W ignore run/scikitPrediction.py Bookcrossing/ Scikit/ F4 Ridge PredictionsSkl > run/out/bc/prediction/scikitTunedPredictions-F4-01-Ridge.out"); | |
Task scikitTP_F5_01_Ridge = new Task("scikitTunedPredictions-F5-01-Ridge.out", "python -u -W ignore run/scikitPrediction.py Bookcrossing/ Scikit/ F5 Ridge PredictionsSkl > run/out/bc/prediction/scikitTunedPredictions-F5-01-Ridge.out"); | |
scikitTP_F1_01_LSVR.withDependencies(preparingTasks); | |
scikitTP_F2_01_LSVR.withDependencies(preparingTasks); | |
scikitTP_F3_01_LSVR.withDependencies(preparingTasks); | |
scikitTP_F4_01_LSVR.withDependencies(preparingTasks); | |
scikitTP_F5_01_LSVR.withDependencies(preparingTasks); | |
scikitTP_F1_01_Ridge.withDependencies(preparingTasks); | |
scikitTP_F2_01_Ridge.withDependencies(preparingTasks); | |
scikitTP_F3_01_Ridge.withDependencies(preparingTasks); | |
scikitTP_F4_01_Ridge.withDependencies(preparingTasks); | |
scikitTP_F5_01_Ridge.withDependencies(preparingTasks); | |
ArrayList<Task> scikitTasks = new ArrayList<>(Arrays.asList( | |
scikitTP_F1_01_LSVR, scikitTP_F2_01_LSVR, scikitTP_F3_01_LSVR, scikitTP_F4_01_LSVR, scikitTP_F5_01_LSVR, | |
scikitTP_F1_01_Ridge, scikitTP_F2_01_Ridge, scikitTP_F3_01_Ridge, scikitTP_F4_01_Ridge, scikitTP_F5_01_Ridge)); | |
// ------------------------------------------------------------------------------------------------------------- | |
// Avaliação | |
Task executeEMC_F1 = new Task("executeEvaluationMetricsCalculator-R1-<MO_FOLD>-F1<GROUP_OUT>.out", "java -Xms4G -Xmx6G -jar run/EvaluationRunner.jar <BD> F1 Predictions PredictionsSkl Measures > run/out/<OUT>/eval/executeEvaluationMetricsCalculator-R1-<MO_FOLD>-F1<GROUP_OUT>.out"); | |
Task executeEMC_F2 = new Task("executeEvaluationMetricsCalculator-R1-<MO_FOLD>-F2<GROUP_OUT>.out", "java -Xms4G -Xmx6G -jar run/EvaluationRunner.jar <BD> F2 Predictions PredictionsSkl Measures > run/out/<OUT>/eval/executeEvaluationMetricsCalculator-R1-<MO_FOLD>-F2<GROUP_OUT>.out"); | |
Task executeEMC_F3 = new Task("executeEvaluationMetricsCalculator-R1-<MO_FOLD>-F3<GROUP_OUT>.out", "java -Xms4G -Xmx6G -jar run/EvaluationRunner.jar <BD> F3 Predictions PredictionsSkl Measures > run/out/<OUT>/eval/executeEvaluationMetricsCalculator-R1-<MO_FOLD>-F3<GROUP_OUT>.out"); | |
Task executeEMC_F4 = new Task("executeEvaluationMetricsCalculator-R1-<MO_FOLD>-F4<GROUP_OUT>.out", "java -Xms4G -Xmx6G -jar run/EvaluationRunner.jar <BD> F4 Predictions PredictionsSkl Measures > run/out/<OUT>/eval/executeEvaluationMetricsCalculator-R1-<MO_FOLD>-F4<GROUP_OUT>.out"); | |
Task executeEMC_F5 = new Task("executeEvaluationMetricsCalculator-R1-<MO_FOLD>-F5<GROUP_OUT>.out", "java -Xms4G -Xmx6G -jar run/EvaluationRunner.jar <BD> F5 Predictions PredictionsSkl Measures > run/out/<OUT>/eval/executeEvaluationMetricsCalculator-R1-<MO_FOLD>-F5<GROUP_OUT>.out"); | |
executeEMC_F1.withDependencies(scikitTasks); | |
executeEMC_F2.withDependencies(scikitTasks); | |
executeEMC_F3.withDependencies(scikitTasks); | |
executeEMC_F4.withDependencies(scikitTasks); | |
executeEMC_F5.withDependencies(scikitTasks); | |
ArrayList<Task> evalueatingTasks = new ArrayList<>(Arrays.asList( | |
executeEMC_F1, | |
executeEMC_F2, | |
executeEMC_F3, | |
executeEMC_F4, | |
executeEMC_F5)); | |
// ------------------------------------------------------------------------------------------------------------- | |
// Execução | |
ArrayList<Task> allTasks = new ArrayList<>(); | |
allTasks.addAll(filteringTasks); | |
allTasks.addAll(preparingTasks); | |
allTasks.addAll(scikitTasks); | |
allTasks.addAll(evalueatingTasks); | |
Experiment experiment = new Experiment("Recomendation System", allTasks); | |
experiment.execute(); |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment