Created
April 28, 2021 23:25
-
-
Save PanagiotisPtr/34ae0761242d938c81f3345bd8145bf9 to your computer and use it in GitHub Desktop.
Maximum Flow Minimum Cost implementation with SPFA
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <cstdio> | |
#define min(a, b) a < b ? a : b | |
using namespace std; | |
template<typename lt = long, typename sz = size_t> | |
struct MCMF { | |
static constexpr lt INF = 1e9; | |
static constexpr lt MAX_NODES = 1e6 + 5; | |
struct Edge { | |
sz from; | |
sz to; | |
sz next; | |
lt cap; | |
lt cost; | |
Edge(): from(0), to(0), next(0), cap(0), cost(0) {} | |
Edge(sz f, sz t, sz n, lt cp, lt cs) | |
: from(f), to(t), next(n), cap(cp), cost(cs) {} | |
}; | |
struct Solution { | |
lt maxFlow; | |
lt cost; | |
}; | |
sz N; | |
sz count; | |
Solution sol; | |
sz* head; // head | |
lt* pre; | |
lt* dis; | |
sz* vis; | |
sz* path; | |
sz* q; // queue | |
Edge* e; // edges | |
MCMF(sz maxNodes = MCMF::MAX_NODES) { | |
N = maxNodes+1; | |
count = 0; | |
head = new sz[MCMF::MAX_NODES]; | |
for (sz i = 0; i < maxNodes; i++) head[i] = -1; | |
pre = new lt[MCMF::MAX_NODES]; | |
dis = new lt[MCMF::MAX_NODES]; | |
vis = new sz[MCMF::MAX_NODES]; | |
path = new sz[MCMF::MAX_NODES]; | |
q = new sz[MCMF::MAX_NODES]; | |
e = new Edge[MCMF::MAX_NODES << 2]; | |
} | |
~MCMF() { | |
delete head; | |
delete pre; | |
delete dis; | |
delete vis; | |
delete path; | |
delete q; | |
delete e; | |
} | |
inline void addDirect(sz from, sz to, lt cap, lt cost) { | |
e[count] = Edge(from, to, head[from], cap, cost); | |
head[from] = count++; | |
} | |
inline void add(sz from, sz to, sz cap, lt cost) { | |
addDirect(from, to, cap, cost); | |
addDirect(to, from, 0, -cost); | |
} | |
bool spfa(sz s, sz t) { | |
for (sz i = 0; i < N; i++) dis[i] = MCMF::INF; | |
for (sz j = 0; j < N; j++) { | |
pre[j] = -1; | |
vis[j] = 0; | |
} | |
dis[s] = 0; | |
sz h = 0; | |
q[h++] = s; | |
vis[s] = 1; | |
while (h) { | |
sz u = q[--h]; | |
for (sz i = head[u]; i != -1; i = e[i].next) { | |
sz v = e[i].to; | |
if (e[i].cap > 0 && dis[v] > dis[u] + e[i].cost) { | |
dis[v] = dis[u] + e[i].cost; | |
pre[v] = u; | |
path[v] = i; | |
if (!vis[v]) { | |
vis[v] = 1; | |
q[h++] = v; | |
} | |
} | |
} | |
vis[u] = 0; | |
} | |
return pre[t] != -1; | |
} | |
void calc(sz s, sz t) { | |
sz u; | |
lt flow = MCMF::INF; | |
for (u = t; u != s; u = pre[u]) | |
flow = min(flow, e[path[u]].cap); | |
sol.maxFlow += flow; | |
for (u = t; u != s; u = pre[u]) { | |
e[path[u]].cap -= flow; | |
e[path[u]^1].cap += flow; | |
sol.cost += flow * e[path[u]].cost; | |
} | |
} | |
Solution solve(sz s, sz t) { | |
sol.maxFlow = 0; | |
sol.cost = 0; | |
while (spfa(s, t)) calc(s, t); | |
return sol; | |
} | |
}; |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment